Display options
Share it on

Nat Commun. 2015 Jul 27;6:7788. doi: 10.1038/ncomms8788.

Ultrafast spontaneous emission source using plasmonic nanoantennas.

Nature communications

Thang B Hoang, Gleb M Akselrod, Christos Argyropoulos, Jiani Huang, David R Smith, Maiken H Mikkelsen

Affiliations

  1. 1] Department of Physics, Duke University, Durham, North Carolina 27708, USA. [2] Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA.
  2. 1] Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA. [2] Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA.
  3. 1] Department of Physics, Duke University, Durham, North Carolina 27708, USA. [2] Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA. [3] Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA.

PMID: 26212857 PMCID: PMC4525280 DOI: 10.1038/ncomms8788

Abstract

Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

References

  1. Phys Rev Lett. 2007 Nov 9;99(19):193901 - PubMed
  2. Nat Mater. 2014 Mar;13(3):279-85 - PubMed
  3. Nature. 2004 Nov 11;432(7014):197-200 - PubMed
  4. Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5473-7 - PubMed
  5. Adv Mater. 2013 Sep 25;25(36):4986-5010 - PubMed
  6. Nat Commun. 2011 Nov 15;2:539 - PubMed
  7. Opt Express. 2008 Nov 24;16(24):19592-9 - PubMed
  8. Adv Mater. 2012 Nov 20;24(44):OP314-20 - PubMed
  9. Nano Lett. 2007 Feb;7(2):496-501 - PubMed
  10. Opt Express. 2010 Feb 1;18(3):2601-12 - PubMed
  11. Nano Lett. 2009 Apr;9(4):1694-8 - PubMed
  12. Science. 2012 Apr 13;336(6078):205-9 - PubMed
  13. Nano Lett. 2013;13(12):5866-72 - PubMed
  14. Rep Prog Phys. 2012 Dec;75(12):126501 - PubMed
  15. Phys Rev Lett. 2002 Dec 2;89(23):233602 - PubMed
  16. Nature. 2003 Feb 27;421(6926):925-8 - PubMed
  17. Chemistry. 2010 Sep 3;16(33):10234-9 - PubMed
  18. Nano Lett. 2007 Sep;7(9):2871-5 - PubMed
  19. Nature. 2003 Aug 14;424(6950):839-46 - PubMed
  20. Nat Nanotechnol. 2013 Jul;8(7):506-11 - PubMed
  21. Phys Rev Lett. 2002 Nov 11;89(20):203002 - PubMed
  22. Nano Lett. 2011 Mar 9;11(3):1049-54 - PubMed
  23. Nano Lett. 2014 Aug 13;14(8):4797-802 - PubMed
  24. Sci Rep. 2014;4:5040 - PubMed
  25. Phys Rev Lett. 2005 Sep 30;95(14):143901 - PubMed
  26. Phys Rev Lett. 2006 Jul 7;97(1):017402 - PubMed
  27. Nature. 2007 Feb 22;445(7130):896-9 - PubMed
  28. Appl Opt. 1999 Feb 1;38(4):724-32 - PubMed
  29. Science. 2000 Feb 11;287(5455):1011-3 - PubMed
  30. Phys Rev Lett. 2010 Jan 15;104(2):026802 - PubMed
  31. Nat Commun. 2013;4:1425 - PubMed
  32. Opt Express. 2014 Feb 10;22(3):3013-27 - PubMed
  33. Nano Lett. 2013 Apr 10;13(4):1516-21 - PubMed

Publication Types