Display options
Share it on

Biotechnol Biofuels. 2015 Aug 04;8:109. doi: 10.1186/s13068-015-0289-9. eCollection 2015.

Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes.

Biotechnology for biofuels

Zhongpeng Guo, Sophie Duquesne, Sophie Bozonnet, Gianluca Cioci, Jean-Marc Nicaud, Alain Marty, Michael Joseph O'Donohue

Affiliations

  1. LISBP-Biocatalysis Group, INSA/INRA UMR 792, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France ; CNRS, UMR5504, 31400 Toulouse, France.
  2. INRA, UMR1319 Micalis, 78352 Jouy-en-Josas, France ; AgroParisTech, UMR Micalis, 78352 Jouy-en-Josas, France.

PMID: 26244054 PMCID: PMC4524412 DOI: 10.1186/s13068-015-0289-9

Abstract

BACKGROUND: Yarrowia lipolytica, one of the most widely studied "nonconventional" oleaginous yeast species, is unable to grow on cellobiose. Engineering cellobiose-degrading ability into this yeast is a vital step towards the development of cellulolytic biocatalysts suitable for consolidated bioprocessing.

RESULTS: In the present work, we identified six genes encoding putative β-glucosidases in the Y. lipolytica genome. To study these, homologous expression was attempted in Y. lipolytica JMY1212 Zeta. Two strains overexpressing BGL1 (YALI0F16027g) and BGL2 (YALI0B14289g) produced β-glucosidase activity and were able to degrade cellobiose, while the other four did not display any detectable activity. The two active β-glucosidases, one of which was mainly cell-associated while the other was present in the extracellular medium, were purified and characterized. The two Bgls were most active at 40-45°C and pH 4.0-4.5, and exhibited hydrolytic activity on various β-glycoside substrates. Specifically, Bgl1 displayed 12.5-fold higher catalytic efficiency on cellobiose than Bgl2. Significantly, in experiments where cellobiose or cellulose (performed in the presence of a β-glucosidase-deficient commercial cellulase cocktail produced by Trichoderma reseei) was used as carbon source for aerobic cultivation, Y. lipolytica ∆pox co-expressing BGL1 and BGL2 grew better than the Y. lipolytica strains expressing single BGLs. The specific growth rate and biomass yield of Y. lipolytica JMY1212 co-expressing BGL1 and BGL2 were 0.15 h(-1) and 0.50 g-DCW/g-cellobiose, respectively, similar to that of the control grown on glucose.

CONCLUSIONS: We conclude that the bi-functional Y. lipolytica developed in the current study represents a vital step towards the creation of a cellulolytic yeast strain that can be used for lipid production from lignocellulosic biomass. When used in combination with commercial cellulolytic cocktails, this strain will no doubt reduce enzyme requirements and thus costs.

Keywords: Cellulases; Enzymatic hydrolysis; Lignocellulosic biomass; Lipids; Oleaginous yeast

References

  1. Biotechnol Bioeng. 2015 May;112(5):1012-22 - PubMed
  2. FEMS Yeast Res. 2002 Aug;2(3):371-9 - PubMed
  3. Crit Rev Microbiol. 2014 Aug;40(3):187-206 - PubMed
  4. N Biotechnol. 2010 Dec 31;27(6):739-50 - PubMed
  5. Anal Biochem. 1986 Jan;152(1):141-5 - PubMed
  6. Biosci Biotechnol Biochem. 1997 Jun;61(6):965-70 - PubMed
  7. Appl Microbiol Biotechnol. 2011 Sep;91(5):1327-40 - PubMed
  8. Enzyme Microb Technol. 2011 Jun 10;49(1):105-12 - PubMed
  9. FEMS Yeast Res. 2005 Apr;5(6-7):527-43 - PubMed
  10. Biotechnol Bioeng. 1990 Jul;36(3):275-87 - PubMed
  11. Bioresour Technol. 2013 Jan;127:500-7 - PubMed
  12. PLoS One. 2013 May 07;8(5):e63356 - PubMed
  13. Bioresour Technol. 2008 Jul;99(11):5099-103 - PubMed
  14. PLoS One. 2014 Apr 17;9(4):e95128 - PubMed
  15. Appl Environ Microbiol. 1996 Sep;62(9):3165-70 - PubMed
  16. Adv Microb Physiol. 1995;37:1-81 - PubMed
  17. J Microbiol Methods. 2003 Dec;55(3):727-37 - PubMed
  18. Nature. 2004 Jul 1;430(6995):35-44 - PubMed
  19. Nat Commun. 2014;5:3131 - PubMed
  20. PLoS One. 2013 Jun 28;8(6):e67008 - PubMed
  21. J Microbiol Biotechnol. 2008 May;18(5):933-41 - PubMed
  22. Methods Mol Biol. 2012;861:301-12 - PubMed
  23. Bioresour Technol. 2002 May;83(1):1-11 - PubMed
  24. Appl Environ Microbiol. 2008 Dec;74(24):7779-89 - PubMed
  25. FEBS Lett. 2009 Dec 17;583(24):3905-13 - PubMed
  26. Curr Opin Biotechnol. 2005 Oct;16(5):577-83 - PubMed
  27. Appl Biochem Biotechnol. 2010 Sep;162(2):538-47 - PubMed
  28. J Microbiol Biotechnol. 2013 Nov 28;23(11):1577-85 - PubMed
  29. Curr Opin Biotechnol. 2009 Jun;20(3):295-9 - PubMed
  30. J Biotechnol. 2013 Sep 10;167(3):316-22 - PubMed
  31. FEMS Microbiol Rev. 2005 Jan;29(1):3-23 - PubMed
  32. Curr Genet. 1996 Feb;29(3):227-33 - PubMed
  33. Yeast. 1992 Jul;8(7):501-17 - PubMed
  34. Bioresour Technol. 2009 Jan;100(1):356-61 - PubMed
  35. Biotechnol Lett. 2008 Aug;30(8):1469-75 - PubMed
  36. Metab Eng. 2014 Jan;21:103-13 - PubMed
  37. Nature. 2010 Jan 28;463(7280):559-62 - PubMed
  38. Bioresour Technol. 2012 Apr;110:526-33 - PubMed
  39. Biotechnol Appl Biochem. 1987 Oct;9(5):410-22 - PubMed
  40. Nat Biotechnol. 2012 Mar 25;30(4):354-9 - PubMed
  41. J Microbiol Methods. 2007 Sep;70(3):493-502 - PubMed
  42. Mol Cells. 2009 Oct 31;28(4):369-73 - PubMed
  43. Appl Environ Microbiol. 1988 Dec;54(12):3147-55 - PubMed
  44. Appl Microbiol Biotechnol. 2010 Jul;87(4):1195-208 - PubMed
  45. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  46. Biotechnol Bioeng. 2014 Aug;111(8):1521-31 - PubMed
  47. J Agric Food Chem. 2003 Feb 26;51(5):1453-9 - PubMed
  48. Biotechnol Biofuels. 2012 Feb 24;5:7 - PubMed

Publication Types