Display options
Share it on

Intensive Care Med Exp. 2014 Dec;2(1):21. doi: 10.1186/s40635-014-0021-2. Epub 2014 Sep 03.

Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis).

Intensive care medicine experimental

Hanna K de Jong, Gavin Ckw Koh, Ahmed Achouiti, Anne J van der Meer, Ingrid Bulder, Femke Stephan, Joris Jth Roelofs, Nick Pj Day, Sharon J Peacock, Sacha Zeerleder, W Joost Wiersinga

Affiliations

  1. Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Meibergdreef 9, Room G2-132, Amsterdam, 1105 AZ, The Netherlands, [email protected].

PMID: 26215706 PMCID: PMC4678137 DOI: 10.1186/s40635-014-0021-2

Abstract

BACKGROUND: Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause of Gram-negative sepsis in Southeast Asia.

METHODS: In a prospective observational study, circulating nucleosomes and neutrophil elastase were assayed in 44 patients with Gram-negative sepsis caused by B. pseudomallei (melioidosis) and 82 controls. Functional assays included human neutrophil stimulation and killing assays and a murine model of B. pseudomallei infection in which NET function was compromised using DNase. Specified pathogen-free 8- to 12-week-old C57BL/6 mice were sacrificed post-infection to assess bacterial loads, inflammation, and pathology.

RESULTS: Nucleosome and neutrophil elastase levels were markedly elevated in patients compared to controls. NETs killed B. pseudomallei effectively, and neutrophils stimulated with B. pseudomallei showed increased elastase and DNA release in a time- and dose-dependent matter. In mice, NET disruption with intravenous DNase administration resulted in decreased nucleosome levels. Although DNase treatment of mice resulted in diminished liver inflammation, no differences were observed in bacterial dissemination or systemic inflammation.

CONCLUSION: B. pseudomallei is a potent inducer of NETosis which was reflected by greatly increased levels of NET-related components in melioidosis patients. Although NETs exhibited antibacterial activity against B. pseudomallei, NET formation did not protect against bacterial dissemination and inflammation during B. pseudomallei-induced sepsis.

References

  1. Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):147-51 - PubMed
  2. Nat Rev Immunol. 2013 Jan;13(1):34-45 - PubMed
  3. PLoS Pathog. 2012;8(10):e1002987 - PubMed
  4. Infect Immun. 2009 Jan;77(1):456-63 - PubMed
  5. PLoS Med. 2007 Jul 31;4(7):e248 - PubMed
  6. Curr Opin Crit Care. 2011 Oct;17(5):480-6 - PubMed
  7. J Thromb Haemost. 2013 Feb;11(2):282-92 - PubMed
  8. Nat Rev Immunol. 2010 Dec;10(12):826-37 - PubMed
  9. Infect Immun. 2011 Jan;79(1):431-8 - PubMed
  10. Curr Biol. 2006 Feb 21;16(4):401-7 - PubMed
  11. Crit Care Med. 2003 Apr;31(4):1250-6 - PubMed
  12. J Clin Invest. 2002 Mar;109(6):699-705 - PubMed
  13. J Infect Dis. 2007 Jan 1;195(1):99-107 - PubMed
  14. J Infect Dis. 2008 Nov 1;198(9):1388-97 - PubMed
  15. Clin Microbiol Rev. 2005 Apr;18(2):383-416 - PubMed
  16. Cell Host Microbe. 2012 Sep 13;12(3):324-33 - PubMed
  17. Thromb Haemost. 2011 Dec;106(6):1139-48 - PubMed
  18. Cell Microbiol. 2008 Jan;10(1):81-7 - PubMed
  19. J Immunol. 2010 Dec 15;185(12):7413-25 - PubMed
  20. Nat Med. 2012 Sep;18(9):1386-93 - PubMed
  21. Ann Rheum Dis. 2003 Jan;62(1):10-4 - PubMed
  22. J Med Microbiol. 2001 Aug;50(8):657-8 - PubMed
  23. Crit Care Med. 2003 Jul;31(7):1947-51 - PubMed
  24. Infect Immun. 2012 Nov;80(11):3921-9 - PubMed
  25. Nat Rev Microbiol. 2006 Apr;4(4):272-82 - PubMed
  26. Invest Ophthalmol Vis Sci. 1993 Nov;34(12):3376-85 - PubMed
  27. PLoS Pathog. 2009 Oct;5(10):e1000639 - PubMed
  28. Am J Respir Crit Care Med. 2009 Dec 1;180(11):1098-106 - PubMed
  29. PLoS One. 2008;3(10):e3494 - PubMed
  30. PLoS Pathog. 2011 Dec;7(12 ):e1002452 - PubMed
  31. PLoS One. 2013;8(1):e54961 - PubMed
  32. Nat Med. 2009 Nov;15(11):1318-21 - PubMed
  33. Clin Infect Dis. 2011 Mar 15;52(6):717-25 - PubMed
  34. PLoS One. 2011;6(9):e23637 - PubMed
  35. Science. 2004 Mar 5;303(5663):1532-5 - PubMed
  36. Diabetes Care. 2011 Mar;34(3):771-8 - PubMed
  37. Nat Med. 2007 Apr;13(4):463-9 - PubMed
  38. FEBS Lett. 2007 Nov 27;581(28):5382-8 - PubMed
  39. Mol Med. 2012 Sep 25;18:1086-95 - PubMed
  40. Clin Diagn Lab Immunol. 2003 Jul;10(4):529-35 - PubMed
  41. J Infect Dis. 2007 Dec 1;196(11):1707-16 - PubMed
  42. Science. 2013 Nov 15;342(6160):863-6 - PubMed
  43. Nat Rev Immunol. 2013 Mar;13(3):159-75 - PubMed
  44. Clin Immunol. 2012 Jul;144(1):32-40 - PubMed
  45. Blood. 2012 Jun 28;119(26):6335-43 - PubMed
  46. N Engl J Med. 2012 Sep 13;367(11):1035-44 - PubMed
  47. Crit Care Med. 2012 Dec;40(12):3224-9 - PubMed
  48. Nat Med. 2010 Aug;16(8):887-96 - PubMed
  49. J Cell Biol. 2010 Nov 1;191(3):677-91 - PubMed
  50. J Bacteriol. 2004 Jun;186(12):3938-50 - PubMed
  51. J Immunol. 2012 Sep 15;189(6):2689-95 - PubMed
  52. J Clin Invest. 2012 Aug;122(8):2711-9 - PubMed
  53. Fed Regist. 2012 Oct 5;77(194):61083-115 - PubMed
  54. Eur J Clin Microbiol Infect Dis. 2012 Apr;31(4):379-88 - PubMed
  55. Clin Infect Dis. 1999 Aug;29(2):408-13 - PubMed

Publication Types