Display options
Share it on

Intensive Care Med Exp. 2015 Dec;3(1):56. doi: 10.1186/s40635-015-0056-z. Epub 2015 Jun 19.

Atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in rats.

Intensive care medicine experimental

Kentaro Tojo, Yusuke Nagamine, Takuya Yazawa, Takahiro Mihara, Yasuko Baba, Shuhei Ota, Takahisa Goto, Kiyoyasu Kurahashi

Affiliations

  1. Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama-city, Kanagawa, 236-0004, Japan, [email protected].

PMID: 26215820 PMCID: PMC4480346 DOI: 10.1186/s40635-015-0056-z

Abstract

BACKGROUND: Patients with acute respiratory distress syndrome receiving mechanical ventilation show inhomogeneous lung aeration. Atelectasis during uneven mechanical ventilation leads to alveolar hypoxia and could therefore result in lung inflammation and injury. We aimed to elucidate whether and how atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in an open-chest differential-ventilation rat model.

METHODS: We first investigated inflammatory and histological changes in the bilateral lungs of unilaterally ventilated rats, in which the right lung was atelectatic and the left lung was ventilated with high tidal volume (HTV). In the next series, we investigated the effects of normal tidal volume (NTV) ventilation of the right lungs with 60 % O2 or 100 % N2 during HTV ventilation of the left lungs. Then, proinflammatory cytokine secretions were quantified from murine lung epithelial (MLE15) and murine alveolar macrophage (MH-S) cells cultured under a hypoxic condition (5 % O2) mimicking atelectasis. Further, activities of nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)-1 were assessed in the nonventilated atelectatic lung and MLE15 cells cultured under the hypoxic condition. Finally, effects of NF-κB inhibition and HIF-1α knockdown on the cytokine secretions from MLE15 cells cultured under the hypoxic condition were assessed.

RESULTS: The nonventilated atelectatic lungs showed inflammatory responses and minimal histological changes comparable to those of the HTV-ventilated lungs. NTV ventilation with 60 % O2 attenuated the increase in chemokine (C-X-C motif) ligand (CXCL)-1 secretion and neutrophil accumulation observed in the atelectatic lungs, but that with 100 % N2 did not. MLE15 cells cultured with tumor necrosis factor (TNF)-α under the hypoxic condition showed increased CXCL-1 secretion. NF-κB and HIF-1α were activated in the nonventilated atelectatic lungs and MLE15 cells cultured under the hypoxic condition. NF-κB inhibition abolished the hypoxia-induced increase in CXCL-1 secretion from MLE15 cells, while HIF-1α knockdown augmented it.

CONCLUSIONS: Atelectasis causes alveolar hypoxia-induced inflammatory responses including NF-κB-dependent CXCL-1 secretion from lung epithelial cells. HIF-1 activation in lung epithelial cells is an anti-inflammatory response to alveolar hypoxia in atelectatic lungs.

References

  1. PLoS Biol. 2013 Sep;11(9):e1001665 - PubMed
  2. Am J Physiol Lung Cell Mol Physiol. 2003 Feb;284(2):L360-7 - PubMed
  3. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18154-9 - PubMed
  4. Respir Physiol. 1995 Jun;100(3):271-81 - PubMed
  5. J Immunol. 2007 Jun 15;178(12):7516-9 - PubMed
  6. Crit Care. 2013 Aug 15;17(4):R175 - PubMed
  7. J Immunol. 2011 Jan 15;186(2):1091-6 - PubMed
  8. Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H951-7 - PubMed
  9. Am J Respir Cell Mol Biol. 2011 Nov;45(5):1028-35 - PubMed
  10. Crit Care. 2012;16(4):R120 - PubMed
  11. Cell. 2003 Mar 7;112(5):645-57 - PubMed
  12. Br J Anaesth. 2011 Apr;106(4):590-9 - PubMed
  13. Cell. 2012 Feb 3;148(3):399-408 - PubMed
  14. Chest. 2004 Aug;126(2):552-8 - PubMed
  15. Crit Care. 2014 Sep 09;18(5):505 - PubMed
  16. PLoS Biol. 2005 Jun;3(6):e174 - PubMed
  17. J Exp Med. 2005 Jan 3;201(1):105-15 - PubMed
  18. JAMA. 2010 Mar 3;303(9):865-73 - PubMed
  19. Thorax. 2012 Mar;67(3):244-51 - PubMed
  20. Am J Respir Cell Mol Biol. 2011 May;44(5):725-38 - PubMed
  21. Exp Biol Med (Maywood). 2008 Sep;233(9):1088-98 - PubMed
  22. Am J Physiol Lung Cell Mol Physiol. 2007 Mar;292(3):L625-31 - PubMed
  23. J Clin Invest. 2002 Dec;110(11):1703-16 - PubMed
  24. Anesthesiology. 2007 Sep;107(3):419-26 - PubMed
  25. PLoS One. 2007 Sep 05;2(9):e853 - PubMed
  26. Am J Respir Crit Care Med. 2003 Jun 15;167(12):1633-40 - PubMed
  27. Annu Rev Immunol. 2004;22:657-82 - PubMed
  28. Crit Care. 2007;11(1):R20 - PubMed
  29. J Clin Invest. 2005 Jul;115(7):1806-15 - PubMed
  30. Anesthesiology. 2005 Sep;103(3):522-31 - PubMed
  31. J Clin Invest. 2001 Jan;107(1):7-11 - PubMed
  32. N Engl J Med. 2011 Feb 17;364(7):656-65 - PubMed
  33. Am J Respir Crit Care Med. 1997 Jan;155(1):313-20 - PubMed
  34. Anesthesiology. 2013 Jun;118(6):1426-36 - PubMed
  35. Am J Respir Cell Mol Biol. 2009 Nov;41(5):573-82 - PubMed
  36. Am J Respir Cell Mol Biol. 2013 Mar;48(3):271-9 - PubMed
  37. Respir Care. 2013 Jan;58(1):123-41 - PubMed
  38. Am J Respir Cell Mol Biol. 2011 Jul;45(1):53-61 - PubMed
  39. J Physiol. 2008 Sep 1;586(17 ):4055-9 - PubMed
  40. Am J Respir Crit Care Med. 2006 Aug 1;174(3):279-89 - PubMed
  41. Am J Respir Crit Care Med. 1994 May;149(5):1327-34 - PubMed
  42. J Appl Physiol (1985). 1999 Aug;87(2):510-5 - PubMed

Publication Types