Display options
Share it on

Front Plant Sci. 2015 Jun 23;6:456. doi: 10.3389/fpls.2015.00456. eCollection 2015.

Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.

Frontiers in plant science

Alberto de Marcos, Magdalena Triviño, María Luisa Pérez-Bueno, Isabel Ballesteros, Matilde Barón, Montaña Mena, Carmen Fenoll

Affiliations

  1. Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha Toledo, Spain.
  2. Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín Granada, Spain.

PMID: 26157447 PMCID: PMC4477074 DOI: 10.3389/fpls.2015.00456

Abstract

Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up-regulated in mute-3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute-3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of stomata.

Keywords: epidermis development; fluorescence imaging; mute-3; photosynthesis; spch-3; stomata; transcription factor; transcriptome

References

  1. Nature. 2007 Feb 1;445(7127):501-5 - PubMed
  2. Plant Physiol. 2003 Jun;132(2):926-35 - PubMed
  3. J Biol Chem. 2005 Jul 8;280(27):25590-5 - PubMed
  4. Arabidopsis Book. 2013 Jun 06;11:e0162 - PubMed
  5. Planta. 2010 Oct;232(5):1061-74 - PubMed
  6. Plant Physiol. 2011 Jul;156(3):1620-30 - PubMed
  7. Plant J. 2013 Sep;75(5):808-22 - PubMed
  8. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed
  9. Plant J. 2004 Mar;37(6):914-39 - PubMed
  10. Bioinformatics. 2002 Dec;18(12):1585-92 - PubMed
  11. PLoS One. 2007 Aug 08;2(8):e718 - PubMed
  12. Plant Cell. 2011 Sep;23(9):3260-75 - PubMed
  13. Curr Biol. 2009 Feb 10;19(3):229-34 - PubMed
  14. Curr Opin Plant Biol. 2014 Oct;21:67-74 - PubMed
  15. Science. 2014 Sep 26;345(6204):1605-9 - PubMed
  16. J Biol Chem. 2008 Mar 7;283(10 ):6261-71 - PubMed
  17. Plant Physiol. 2011 Mar;155(3):1458-72 - PubMed
  18. Front Plant Sci. 2014 Nov 07;5:626 - PubMed
  19. New Phytol. 2014 Mar;201(4):1205-17 - PubMed
  20. Nature. 2007 Feb 1;445(7127):537-40 - PubMed
  21. Plant Cell. 2010 Sep;22(9):2956-69 - PubMed
  22. Plant J. 2011 Sep;67(5):840-51 - PubMed
  23. Planta. 2012 Aug;236(2):447-61 - PubMed
  24. Plant Physiol. 2008 Dec;148(4):2021-49 - PubMed
  25. Plant J. 2010 Dec;64(5):731-9 - PubMed
  26. Plant J. 2003 Aug;35(4):501-11 - PubMed
  27. Plant J. 2013 May;74(3):448-57 - PubMed
  28. Physiol Plant. 2001 Mar;111(3):345-352 - PubMed
  29. Nature. 2003 Aug 21;424(6951):901-8 - PubMed
  30. Planta. 2006 Jul;224(2):315-29 - PubMed
  31. Mol Plant. 2011 May;4(3):377-94 - PubMed
  32. J Exp Bot. 2012 Jun;63(10):3799-813 - PubMed
  33. New Phytol. 2015 Jul;207(1):188-95 - PubMed
  34. Bioinformatics. 2002 Jan;18(1):207-8 - PubMed
  35. Plant Cell. 1999 Jan;11(1):43-55 - PubMed
  36. Plant Cell. 2006 Oct;18(10):2493-505 - PubMed
  37. Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7 - PubMed
  38. Nature. 2007 Aug 23;448(7156):938-42 - PubMed
  39. Science. 2002 May 31;296(5573):1697-700 - PubMed
  40. Plant Cell. 2002 Jul;14(7):1527-39 - PubMed
  41. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  42. Plant Physiol. 2005 Jan;137(1):253-62 - PubMed
  43. Curr Biol. 2014 Jun 2;24(11):1216-21 - PubMed
  44. Cold Spring Harb Symp Quant Biol. 2012;77:53-62 - PubMed
  45. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13124-9 - PubMed
  46. Trends Plant Sci. 2012 Dec;17(12):711-9 - PubMed
  47. Plant Cell Physiol. 2014 Dec;55(12):2037-46 - PubMed
  48. Plant Cell. 2007 Feb;19(2):473-84 - PubMed
  49. Nature. 2014 Sep 11;513(7517):246-50 - PubMed
  50. New Phytol. 2014 Mar;201(4):1218-26 - PubMed
  51. Planta. 2011 Aug;234(2):229-41 - PubMed
  52. Nature. 2006 Sep 28;443(7110):E8; discussion E8-9 - PubMed
  53. Annu Rev Plant Biol. 2012;63:591-614 - PubMed
  54. Nucleic Acids Res. 2007 Jan;35(Database issue):D863-9 - PubMed
  55. Ann Bot. 2011 Jun;107(8):1247-58 - PubMed
  56. New Phytol. 2008;178(1):9-23 - PubMed
  57. Curr Top Dev Biol. 2010;91:267-97 - PubMed
  58. Plant J. 2014 Mar;77(6):944-53 - PubMed
  59. Plant Cell. 1996 Apr;8(4):659-71 - PubMed
  60. Genetics. 2008 Oct;180(2):895-904 - PubMed
  61. Plant Physiol. 2005 Nov;139(3):1350-65 - PubMed
  62. Plant Biol (Stuttg). 2007 Sep;9(5):573-81 - PubMed
  63. Nucleic Acids Res. 2011 Jan;39(Database issue):D1118-22 - PubMed
  64. Plant Cell. 2010 Dec;22(12):4128-41 - PubMed
  65. Science. 2003 Feb 7;299(5608):902-6 - PubMed
  66. Plant Cell. 2004 Mar;16(3):596-615 - PubMed
  67. Plant Cell Physiol. 2008 Oct;49(10 ):1522-35 - PubMed
  68. Development. 2012 Oct;139(20):3683-92 - PubMed
  69. Plant Cell Physiol. 1999 Jun;40(6):571-80 - PubMed
  70. Plant Cell. 2009 Sep;21(9):2624-41 - PubMed
  71. Biostatistics. 2003 Apr;4(2):249-64 - PubMed

Publication Types