Display options
Share it on

PeerJ. 2015 Jul 02;3:e1023. doi: 10.7717/peerj.1023. eCollection 2015.

Divergent thermal specialisation of two South African entomopathogenic nematodes.

PeerJ

Matthew P Hill, Antoinette P Malan, John S Terblanche

Affiliations

  1. Centre of Excellence for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University , South Africa.
  2. Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University , South Africa.

PMID: 26157609 PMCID: PMC4493674 DOI: 10.7717/peerj.1023

Abstract

Thermal physiology of entomopathogenic nematodes (EPN) is a critical aspect of field performance and fitness. Thermal limits for survival and activity, and the ability of these limits to adjust (i.e., show phenotypic flexibility) depending on recent thermal history, are generally poorly established, especially for non-model nematode species. Here we report the acute thermal limits for survival, and the thermal acclimation-related plasticity thereof for two key endemic South African EPN species, Steinernema yirgalemense and Heterorhabditis zealandica. Results including LT50 indicate S. yirgalemense (LT50 = 40.8 ± 0.3 °C) has greater high temperature tolerance than H. zealandica (LT50 = 36.7 ± 0.2 °C), but S. yirgalemense (LT50 = -2.4 ± 0 °C) has poorer low temperature tolerance in comparison to H. zealandica (LT50 = -9.7 ± 0.3 °C), suggesting these two EPN species occupy divergent thermal niches to one another. Acclimation had both negative and positive effects on temperature stress survival of both species, although the overall variation meant that many of these effects were non-significant. There was no indication of a consistent loss of plasticity with improved basal thermal tolerance for either species at upper lethal temperatures. At lower temperatures measured for H. zealandica, the 5 °C acclimation lowered survival until below -12.5 °C, where after it increased survival. Such results indicate that the thermal niche breadth of EPN species can differ significantly depending on recent thermal conditions, and should be characterized across a broad range of species to understand the evolution of thermal limits to performance and survival in this group.

Keywords: Acclimation; Biocontrol; Entomopathogenic nematodes; Plasticity; Thermal tolerance

References

  1. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5716-20 - PubMed
  2. Int J Parasitol. 2003 Feb;33(2):145-52 - PubMed
  3. J Parasitol. 2005 Oct;91(5):988-94 - PubMed
  4. Science. 1927 Sep 30;66(1709):302-3 - PubMed
  5. Biol Lett. 2008 Feb 23;4(1):99-102 - PubMed
  6. Adv In Insect Phys. 2006;33:50-152 - PubMed
  7. J Invertebr Pathol. 2009 Nov;102(3):203-13 - PubMed
  8. J Evol Biol. 2011 Sep;24(9):1927-38 - PubMed
  9. J Invertebr Pathol. 2011 Oct;108(2):115-25 - PubMed
  10. J Exp Biol. 2011 Nov 15;214(Pt 22):3713-25 - PubMed
  11. J Invertebr Pathol. 2012 Oct;111(2):166-74 - PubMed
  12. Cryobiology. 2013 Feb;66(1):24-9 - PubMed
  13. J Nematol. 2012 Jun;44(2):218-25 - PubMed
  14. J Exp Biol. 2014 Jun 1;217(Pt 11):1918-24 - PubMed
  15. J Nematol. 2014 Mar;46(1):27-34 - PubMed
  16. PLoS One. 2014 Apr 25;9(4):e94179 - PubMed
  17. J Evol Biol. 2014 Jun;27(6):1149-59 - PubMed
  18. Curr Opin Insect Sci. 2014 Oct;4:60-66 - PubMed
  19. Oecologia. 1997 Feb;109(4):483-489 - PubMed
  20. Experientia. 1996 Jul 15;52(7):727-30 - PubMed
  21. J Invertebr Pathol. 1996 Jul;68(1):65-73 - PubMed
  22. Nature. 1998 Mar 5;392(6671):71-5 - PubMed

Publication Types