Display options
Share it on

Transl Proteom. 2014 Jun 01;3:10-21. doi: 10.1016/j.trprot.2014.03.002.

Microwave & Magnetic (M.

Translational proteomics

Teresa M Evans, Holly Van Remmen, Anjali Purkar, Swetha Mahesula, J Al Gelfond, Marian Sabia, Wenbo Qi, Ai-Ling Lin, Carlos A Jaramillo, William E Haskins

Affiliations

  1. Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
  2. Oklahoma Medical Research Foundation, Oklahoma City, OK, USA ; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
  3. Pediatric Biochemistry Laboratory, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA.
  4. Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
  5. South Texas Veterans Health Care System, San Antonio, Texas, USA, Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
  6. Research Imaging Institute, Barshop Institute and Department of Cellular & Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, USA.
  7. Polytrauma Rehabilitation Center, South Texas Veterans Health Care System, San Antonio, Texas, USA, Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.

PMID: 26157646 PMCID: PMC4492171 DOI: 10.1016/j.trprot.2014.03.002

Abstract

Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI). However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP) expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave & magnetic (M

Keywords: MAG; MBP; biomarkers; central nervous system-specific protein; magnetic; microwave; mild traumatic brain injury; motor impairment; proteins; proteomics

References

  1. Mult Scler. 2012 May;18(5):552-6 - PubMed
  2. J Neurotrauma. 2013 Mar 1;30(5):324-38 - PubMed
  3. Mult Scler. 2013 Apr;19(4):436-42 - PubMed
  4. J Neuropathol Exp Neurol. 2010 Sep;69(9):918-29 - PubMed
  5. Ann Neurol. 2011 Jan;69(1):83-9 - PubMed
  6. Neurocrit Care. 2012 Dec;17(3):401-7 - PubMed
  7. Exp Neurol. 2006 Apr;198(2):361-9 - PubMed
  8. Nat Biotechnol. 2006 Aug;24(8):971-83 - PubMed
  9. Methods Enzymol. 1999;300:3-12 - PubMed
  10. Ann Neurol. 2004 Jul;56(1):36-50 - PubMed
  11. Eur J Neurosci. 2008 Jan;27(1):1-11 - PubMed
  12. Neuroscience. 2005;134(3):1047-56 - PubMed
  13. J Neurotrauma. 2013 Sep 1;30(17):1542-9 - PubMed
  14. Electrophoresis. 2012 Dec;33(24):3820-9 - PubMed
  15. J Neurochem. 2001 Sep;78(6):1297-306 - PubMed
  16. Dev Neurosci. 2010;32(5-6):396-405 - PubMed
  17. J Neurotrauma. 2013 Jun 1;30(11):920-37 - PubMed
  18. Eur J Neurosci. 2006 Dec;24(11):3063-72 - PubMed
  19. J Safety Res. 2012 Sep;43(4):299-307 - PubMed
  20. J Neurotrauma. 2008 Oct;25(10):1153-62 - PubMed
  21. Mass Spectrom Rev. 2007 Sep-Oct;26(5):657-71 - PubMed
  22. Arch Phys Med Rehabil. 2013 Jun;94(6):1199-201 - PubMed
  23. Clin Chem. 2003 Jun;49(6 Pt 1):873-9 - PubMed
  24. Am J Pathol. 1992 Feb;140(2):521-8 - PubMed
  25. Pediatrics. 2006 Feb;117(2):325-32 - PubMed
  26. Comb Chem High Throughput Screen. 2007 Nov;10(9):751-65 - PubMed
  27. Biochim Biophys Acta. 2013 Oct;1832(10 ):1715-22 - PubMed
  28. Nat Rev Neurol. 2013 Apr;9(4):211-21 - PubMed
  29. Free Radic Res. 1995 Mar;22(3):193-207 - PubMed
  30. Front Aging Neurosci. 2013 Jul 11;5:26 - PubMed
  31. Lancet. 1978 Jan 21;1(8056):113-5 - PubMed
  32. Clin Sports Med. 2011 Jan;30(1):179-88, xi - PubMed
  33. Front Neurol. 2013 Apr 26;4:40 - PubMed
  34. Electrophoresis. 2010 May;31(10):1721-30 - PubMed
  35. J Neurotrauma. 1997 Jun;14(6):369-83 - PubMed
  36. Brain Res. 1998 Mar 2;785(2):245-52 - PubMed
  37. Neuropathol Appl Neurobiol. 2013 Oct;39(6):654-66 - PubMed
  38. J Neurosci Res. 2000 Jan 15;59(2):153-9 - PubMed
  39. J Cereb Blood Flow Metab. 2005 Jan;25(1):98-107 - PubMed
  40. Front Hum Neurosci. 2013 Aug 06;7:395 - PubMed
  41. J Neurochem. 2008 Mar;104(5):1404-14 - PubMed
  42. Exp Neurol. 2006 Jan;197(1):70-83 - PubMed
  43. J Neurochem. 1993 Apr;60(4):1554-63 - PubMed
  44. Ann Neurol. 2011 Jun;69(6):1065-6; author reply 1066-7 - PubMed
  45. Electrophoresis. 2012 Dec;33(24):3810-9 - PubMed
  46. Mol Cell Proteomics. 2002 Nov;1(11):845-67 - PubMed
  47. Exp Neurol. 2003 Nov;184(1):214-24 - PubMed
  48. Lancet Neurol. 2012 Jun;11(6):484-5 - PubMed
  49. Cell Mol Life Sci. 2006 Sep;63(17):1945-61 - PubMed
  50. Anal Chem. 2008 Apr 15;80(8):2921-31 - PubMed
  51. J Allergy Clin Immunol. 2001 Jun;107(6):993-1000 - PubMed
  52. Am J Physiol Cell Physiol. 2009 Mar;296(3):C476-88 - PubMed
  53. Front Neurol. 2013 Oct 07;4:157 - PubMed
  54. Crit Care Nurs Q. 2000 Nov;23(3):1-13 - PubMed
  55. J Neurosci Res. 2002 Apr 1;68(1):19-28 - PubMed
  56. Anal Chem. 2003 Apr 15;75(8):1895-904 - PubMed
  57. Can J Aging. 2013 Sep;32(3):278-86 - PubMed
  58. J Neurotrauma. 2011 Jun;28(6):1121-6 - PubMed
  59. J Neurol Sci. 2010 Apr 15;291(1-2):22-9 - PubMed
  60. J Aging Soc Policy. 2012;24(1):29-45 - PubMed
  61. Crit Rev Biochem Mol Biol. 1995;30(6):445-600 - PubMed
  62. J Neurotrauma. 2010 Oct;27(10):1883-93 - PubMed
  63. Biochemistry. 1997 Apr 22;36(16):5065-71 - PubMed
  64. Behav Sci Law. 2013 Nov-Dec;31(6):803-13 - PubMed
  65. Nat Rev Neurosci. 2010 May;11(5):361-70 - PubMed
  66. PLoS One. 2013;8(1):e53376 - PubMed

Publication Types

Grant support