Display options
Share it on

ChemistryOpen. 2015 Jun;4(3):318-27. doi: 10.1002/open.201402132. Epub 2015 Mar 09.

The Role of Aromaticity, Hybridization, Electrostatics, and Covalency in Resonance-Assisted Hydrogen Bonds of Adenine-Thymine (AT) Base Pairs and Their Mimics.

ChemistryOpen

L Guillaumes, S Simon, C Fonseca Guerra, Bhagavatula

Affiliations

  1. Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona 17071, Girona, Spain).
  2. Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University Amsterdam De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands).

PMID: 26246994 PMCID: PMC4522182 DOI: 10.1002/open.201402132

Abstract

Hydrogen bonds play a crucial role in many biochemical processes and in supramolecular chemistry. In this study, we show quantum chemically that neither aromaticity nor other forms of π assistance are responsible for the enhanced stability of the hydrogen bonds in adenine-thymine (AT) DNA base pairs. This follows from extensive bonding analyses of AT and smaller analogs thereof, based on dispersion-corrected density functional theory (DFT). Removing the aromatic rings of either A or T has no effect on the Watson-Crick bond strength. Only when the smaller mimics become saturated, that is, when the hydrogen-bond acceptor and donor groups go from sp (2) to sp (3), does the stability of the resulting model complexes suddenly drop. Bonding analyses based on quantitative Kohn-Sham molecular orbital theory and corresponding energy decomposition analyses (EDA) show that the stronger hydrogen bonds in the unsaturated model complexes and in AT stem from stronger electrostatic interactions as well as enhanced donor-acceptor interactions in the σ-electron system, with the covalency being responsible for shortening the hydrogen bonds in these dimers.

Keywords: DNA base pairs; aromaticity; density functional calculations; molecular orbital (MO) theory; nucleotides; resonance-assisted hydrogen bonding

References

  1. J Phys Chem A. 2010 Aug 26;114(33):8581-90 - PubMed
  2. J Comput Chem. 2011 May;32(7):1456-65 - PubMed
  3. Chemistry. 2007;13(22):6321-8 - PubMed
  4. Nature. 1953 Apr 25;171(4356):737-8 - PubMed
  5. J Comput Chem. 2007 Jan 15;28(1):455-66 - PubMed
  6. Chemistry. 2011 Aug 1;17(32):8816-8 - PubMed
  7. J Comput Chem. 2006 Nov 30;27(15):1787-99 - PubMed
  8. Chemphyschem. 2007 Sep 17;8(13):1950-8 - PubMed
  9. J Mol Model. 2006 Jul;12(5):665-72 - PubMed
  10. J Comput Chem. 2004 Sep;25(12):1463-73 - PubMed
  11. Chemistry. 2011 Nov 4;17(45):12612-22 - PubMed
  12. Nature. 1953 Apr 25;171(4356):738-40 - PubMed
  13. J Phys Chem A. 2007 May 10;111(18):3585-91 - PubMed
  14. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 - PubMed
  15. J Chem Phys. 2010 Apr 21;132(15):154104 - PubMed
  16. J Phys Chem B. 2010 Nov 25;114(46):15311-8 - PubMed
  17. J Org Chem. 2008 Mar 21;73(6):2138-45 - PubMed
  18. J Chem Phys. 2006 May 7;124(17):174104 - PubMed
  19. J Org Chem. 2006 Jul 7;71(14):5241-8 - PubMed
  20. J Chem Phys. 2005 Oct 15;123(15):154101 - PubMed
  21. Chemistry. 2008;14(14):4225-32 - PubMed
  22. J Comput Chem. 2004 Jan 30;25(2):189-210 - PubMed
  23. Nature. 1953 Apr 25;171(4356):740-1 - PubMed
  24. Angew Chem Int Ed Engl. 2009;48(18):3285-7 - PubMed
  25. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 - PubMed
  26. Angew Chem Int Ed Engl. 1999 Oct 4;38(19):2942-2945 - PubMed

Publication Types