Display options
Share it on

Sci Rep. 2015 Jul 28;5:12560. doi: 10.1038/srep12560.

Quantitative reflection phase mesoscopy by remote coherence tuning of phase-shift interference patterns.

Scientific reports

Elad Arbel, Alberto Bilenca

Affiliations

  1. Biomedical Engineering Department, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva 8410501, Israel.
  2. 1] Biomedical Engineering Department, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva 8410501, Israel [2] Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva 8410501, Israel.

PMID: 26216719 PMCID: PMC4517165 DOI: 10.1038/srep12560

Abstract

Conventional low-magnification phase-contrast microscopy is an invaluable, yet a qualitative, imaging tool for the interrogation of transparent objects over a mesoscopic millimeter-scale field-of-view in physical and biological settings. Here, we demonstrate that introducing a compact, unbalanced phase-shifting Michelson interferometer into a standard reflected brightfield microscope equipped with low-power infinity-corrected objectives and white light illumination forms a phase mesoscope that retrieves remotely and quantitatively the reflection phase distribution of thin, transparent, and weakly scattering samples with high temporal (1.38 nm) and spatial (0.87 nm) axial-displacement sensitivity and micrometer lateral resolution (2.3 μm) across a mesoscopic field-of-view (2.25 × 1.19 mm(2)). Using the system, we evaluate the etch-depth uniformity of a large-area nanometer-thick glass grating and show quantitative mesoscopic maps of the optical thickness of human cancer cells without any area scanning. Furthermore, we provide proof-of-principle of the utility of the system for the quantitative monitoring of fluid dynamics within a wide region.

References

  1. Opt Lett. 2005 Mar 1;30(5):468-70 - PubMed
  2. Opt Lett. 2005 Aug 15;30(16):2131-3 - PubMed
  3. Nat Photonics. 2013 Sep 1;7(9):739-745 - PubMed
  4. Opt Lett. 2006 May 15;31(10):1462-4 - PubMed
  5. Opt Lett. 2013 Nov 15;38(22):4845-8 - PubMed
  6. Opt Express. 2014 Feb 10;22(3):3432-8 - PubMed
  7. Rev Sci Instrum. 2013 May;84(5):053701 - PubMed
  8. Opt Lett. 2004 Sep 1;29(17):2028-30 - PubMed
  9. Opt Lett. 2014 Jun 15;39(12):3468-71 - PubMed
  10. Exp Ther Med. 2010 Mar;1(2):337-341 - PubMed
  11. Opt Express. 2010 Mar 1;18(5):4717-26 - PubMed
  12. Blood. 2002 Apr 15;99(8):2703-11 - PubMed
  13. Opt Express. 2012 Nov 19;20(24):26906-12 - PubMed
  14. Biomed Opt Express. 2013 Jul 25;4(8):1434-41 - PubMed
  15. Lab Chip. 2011 Apr 7;11(7):1276-9 - PubMed
  16. Opt Lett. 2005 May 15;30(10):1162-4 - PubMed
  17. PLoS One. 2014;9(4):e95005 - PubMed
  18. Biomed Opt Express. 2014 Jun 19;5(7):2376-89 - PubMed
  19. Opt Express. 2011 Apr 11;19(8):7587-95 - PubMed
  20. Opt Lett. 2004 Oct 15;29(20):2399-401 - PubMed
  21. Opt Express. 2008 Aug 4;16(16):12227-38 - PubMed
  22. Appl Opt. 2005 Jul 1;44(19):3977-84 - PubMed
  23. Opt Lett. 2001 Aug 15;26(16):1271-3 - PubMed
  24. Comb Chem High Throughput Screen. 2014 Jan;17(1):80-8 - PubMed
  25. Opt Lett. 2012 Jun 1;37(11):2016-8 - PubMed
  26. Opt Lett. 2014 Nov 1;39(21):6162-5 - PubMed
  27. Lab Chip. 2012 Apr 7;12(7):1242-5 - PubMed

Publication Types