Display options
Share it on

J Med Imaging (Bellingham). 2015 Jul;2(3):036001. doi: 10.1117/1.JMI.2.3.036001. Epub 2015 Jul 02.

Assessing the accuracy and reproducibility of modality independent elastography in a murine model of breast cancer.

Journal of medical imaging (Bellingham, Wash.)

Jared A Weis, Katelyn M Flint, Violeta Sanchez, Thomas E Yankeelov, Michael I Miga

Affiliations

  1. Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States ; Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, AA-1105 MCN, Nashville, Tennessee 37232-2310, United States ; Vanderbilt University , Radiology and Radiological Sciences, 1161 21st Avenue South, MCN CCC-1118, Nashville, Tennessee 37232-2675, United States.
  2. Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States.
  3. Vanderbilt University , Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 691 PRB, Nashville, Tennessee 37232-6838, United States.
  4. Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States ; Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, AA-1105 MCN, Nashville, Tennessee 37232-2310, United States ; Vanderbilt University , Radiology and Radiological Sciences, 1161 21st Avenue South, MCN CCC-1118, Nashville, Tennessee 37232-2675, United States ; Vanderbilt University , Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 691 PRB, Nashville, Tennessee 37232-6838, United States ; Vanderbilt University , Physics and Astronomy, PMB 401807, 2301 Vanderbilt Place, Nashville, Tennessee 37240-1807, United States ; Vanderbilt University , Cancer Biology, 2220 Pierce Avenue, 771 PRB, Nashville, Tennessee 37232-6840, United States.
  5. Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States ; Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, AA-1105 MCN, Nashville, Tennessee 37232-2310, United States ; Vanderbilt University , Radiology and Radiological Sciences, 1161 21st Avenue South, MCN CCC-1118, Nashville, Tennessee 37232-2675, United States ; Vanderbilt University , Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 691 PRB, Nashville, Tennessee 37232-6838, United States ; Vanderbilt University , Neurosurgery, T-4224 MCN Nashville, Tennessee 37232-2380, United States.

PMID: 26158120 PMCID: PMC4490672 DOI: 10.1117/1.JMI.2.3.036001

Abstract

Cancer progression has been linked to mechanics. Therefore, there has been recent interest in developing noninvasive imaging tools for cancer assessment that are sensitive to changes in tissue mechanical properties. We have developed one such method, modality independent elastography (MIE), that estimates the relative elastic properties of tissue by fitting anatomical image volumes acquired before and after the application of compression to biomechanical models. The aim of this study was to assess the accuracy and reproducibility of the method using phantoms and a murine breast cancer model. Magnetic resonance imaging data were acquired, and the MIE method was used to estimate relative volumetric stiffness. Accuracy was assessed using phantom data by comparing to gold-standard mechanical testing of elasticity ratios. Validation error was [Formula: see text]. Reproducibility analysis was performed on animal data, and within-subject coefficients of variation ranged from 2 to 13% at the bulk level and 32% at the voxel level. To our knowledge, this is the first study to assess the reproducibility of an elasticity imaging metric in a preclinical cancer model. Our results suggest that the MIE method can reproducibly generate accurate estimates of the relative mechanical stiffness and provide guidance on the degree of change needed in order to declare biological changes rather than experimental error in future therapeutic studies.

Keywords: breast cancer; computational modeling; elastography; magnetic resonance imaging; mechanical properties

References

  1. Neuroimage. 2009 Mar;45(1 Suppl):S61-72 - PubMed
  2. AJR Am J Roentgenol. 2008 Jun;190(6):1534-40 - PubMed
  3. Phys Med Biol. 2000 Jun;45(6):1521-40 - PubMed
  4. IEEE Trans Biomed Eng. 2011 Sep;58(9):2607-16 - PubMed
  5. Phys Med Biol. 2007 Mar 7;52(5):1247-60 - PubMed
  6. PLoS One. 2013 Dec 02;8(12 ):e81668 - PubMed
  7. Eur Radiol. 2012 Oct;22(10):2169-77 - PubMed
  8. Stud Health Technol Inform. 2002;85:586-92 - PubMed
  9. PLoS One. 2014 Feb 25;9(2):e89797 - PubMed
  10. Cell Motil Cytoskeleton. 2005 Jan;60(1):24-34 - PubMed
  11. Biomech Model Mechanobiol. 2009 Aug;8(4):337-43 - PubMed
  12. Magn Reson Imaging. 2014 Apr;32(3):245-9 - PubMed
  13. Gut. 2007 Jul;56(7):968-73 - PubMed
  14. Phys Med Biol. 2008 Jan 7;53(1):147-63 - PubMed
  15. Med Image Anal. 1998 Sep;2(3):243-60 - PubMed
  16. Phys Med Biol. 2007 Mar 21;52(6):1565-76 - PubMed
  17. NMR Biomed. 2002 Apr;15(2):132-42 - PubMed
  18. Eur J Radiol. 2012 Nov;81(11):3102-6 - PubMed
  19. J Mammary Gland Biol Neoplasia. 2004 Oct;9(4):325-42 - PubMed
  20. Ultrason Imaging. 1991 Apr;13(2):111-34 - PubMed
  21. Nat Cell Biol. 2006 Aug;8(8):781-2 - PubMed
  22. Biophys J. 2000 Jul;79(1):144-52 - PubMed
  23. AJR Am J Roentgenol. 2002 Jun;178(6):1411-7 - PubMed
  24. Phys Med Biol. 2000 Jun;45(6):1553-63 - PubMed
  25. Mol Cell Biol. 2003 Jun;23(12):4283-94 - PubMed
  26. Med Image Anal. 2001 Dec;5(4):237-54 - PubMed
  27. Stat Methods Med Res. 1999 Jun;8(2):135-60 - PubMed
  28. IEEE Trans Med Imaging. 2013 Oct;32(10):1901-9 - PubMed
  29. Transl Oncol. 2013 Feb;6(1):17-24 - PubMed
  30. Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10889-94 - PubMed
  31. Phys Med Biol. 2011 Jan 7;56(1):R1-R29 - PubMed
  32. Phys Med Biol. 2003 Feb 21;48(4):467-80 - PubMed
  33. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):319-26 - PubMed
  34. Phys Med Biol. 2011 Nov 21;56(22):7223-46 - PubMed
  35. PLoS One. 2009;4(2):e4632 - PubMed
  36. Eur Radiol. 2012 Jul;22(7):1512-8 - PubMed
  37. Br J Cancer. 2014 Apr 2;110(7):1727-32 - PubMed
  38. Science. 1995 Sep 29;269(5232):1854-7 - PubMed
  39. Magn Reson Med. 2013 Jun;69(6):1721-34 - PubMed
  40. Eur Radiol. 2013 Aug;23(8):2079-86 - PubMed
  41. Magn Reson Med. 2014 May;71(5):1834-40 - PubMed
  42. Nat Biotechnol. 1997 Aug;15(8):778-83 - PubMed
  43. IEEE Trans Med Imaging. 2004 Sep;23(9):1117-28 - PubMed
  44. Biophys J. 2007 Jan 1;92(1):356-65 - PubMed
  45. Clin Anat. 2010 Jul;23(5):497-511 - PubMed
  46. Phys Med Biol. 2000 Jun;45(6):1465-75 - PubMed
  47. J Magn Reson Imaging. 2012 Oct;36(4):757-74 - PubMed
  48. Phys Med Biol. 2006 Jan 7;51(1):95-112 - PubMed
  49. J Magn Reson Imaging. 2011 Oct;34(4):947-55 - PubMed
  50. Biometrics. 1977 Mar;33(1):159-74 - PubMed
  51. Cancer Cell. 2005 Sep;8(3):175-6 - PubMed
  52. Ann Biomed Eng. 2011 May;39(5):1379-89 - PubMed
  53. Cancer Cell. 2005 Sep;8(3):241-54 - PubMed
  54. Ultraschall Med. 2000 Feb;21(1):8-15 - PubMed
  55. Med Phys. 2005 May;32(5):1308-20 - PubMed
  56. Cancer Res. 2009 May 15;69(10):4167-74 - PubMed
  57. BJU Int. 2014 Apr;113(4):523-34 - PubMed

Publication Types

Grant support