Display options
Share it on

Data Brief. 2014 Aug 22;1:25-8. doi: 10.1016/j.dib.2014.08.006. eCollection 2014 Dec.

From hundreds to thousands: Widening the normal human Urinome.

Data in brief

Laura Santucci, Giovanni Candiano, Andrea Petretto, Maurizio Bruschi, Chiara Lavarello, Elvira Inglese, Pier Giorgio Righetti, Gian Marco Ghiggeri

Affiliations

  1. Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, 16148 Genova, Italy.
  2. Laboratory of Mass Spectrometry - Core Facility, Istituto Giannina Gaslini, 16148 Genova, Italy.
  3. Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, 20131 Milano, Italy.

PMID: 26217681 PMCID: PMC4459867 DOI: 10.1016/j.dib.2014.08.006

Abstract

The limits on protein detection in urine are unknown. Improving the analytical approach to detection would increase the number of identified proteins and potentially strengthen their predictive potential in diseases. Here, we present the data that resulted from a combination of analytical procedures for maximizing sensitivity and reproducibility of normal human urinary proteome analysis. These procedures are ultracentrifugation, vesicle separation, combinatorial peptide ligand libraries (CPLL) and solvent removal of pigments. Proteins were identified by an Orbitrap Velos Mass Spectrometry. 3429 proteins are characterized, 1724 of which are novel discoveries. The data are related to Santucci et al. (in press) [1] and available both here and at ChorusProject.org under project name "From hundreds to thousands: widening the normal human Urinome". The material supplied to Chorus Progect.org includes technical MS spectra data only.

Keywords: Combinatorial peptide ligand libraries; Mass spectrometry; Urinary proteome; Vesicles

References

  1. Proteomics. 2011 Mar;11(6):1160-71 - PubMed
  2. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13368-73 - PubMed
  3. J Proteome Res. 2009 Sep;8(9):4173-81 - PubMed
  4. Rapid Commun Mass Spectrom. 2010 Mar;24(6):823-32 - PubMed
  5. J Proteome Res. 2010 Feb 5;9(2):1138-43 - PubMed
  6. Nat Methods. 2014 Jan;11(1):59-62 - PubMed
  7. Proteomics. 2005 Dec;5(18):4994-5001 - PubMed
  8. Proteomics. 2012 Feb;12(3):391-400 - PubMed
  9. J Proteome Res. 2011 Jun 3;10(6):2734-43 - PubMed
  10. Kidney Int. 2002 Oct;62(4):1461-9 - PubMed
  11. J Proteomics. 2008 Oct 7;71(4):490-2 - PubMed
  12. Proteomics Clin Appl. 2009 Sep 1;3(9):1052-1061 - PubMed
  13. Proteomics. 2012 Feb;12(4-5):509-15 - PubMed
  14. Nat Methods. 2009 May;6(5):359-62 - PubMed
  15. J Proteome Res. 2008 Sep;7(9):4022-30 - PubMed
  16. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  17. J Proteomics. 2015 Jan 1;112:53-62 - PubMed
  18. J Proteomics. 2012 Jan 4;75(3):796-805 - PubMed
  19. Genome Biol. 2006;7(9):R80 - PubMed

Publication Types