Display options
Share it on

Physiol Rep. 2015 Aug;3(8). doi: 10.14814/phy2.12474.

Investigation of metabolic changes in STZ-induced diabetic rats with hyperpolarized [1-13C]acetate.

Physiological reports

Ulrich Koellisch, Christoffer Laustsen, Thomas S Nørlinger, Jakob Appel Østergaard, Allan Flyvbjerg, Concetta V Gringeri, Marion I Menzel, Rolf F Schulte, Axel Haase, Hans Stødkilde-Jørgensen

Affiliations

  1. Institute of Medical Engineering, Technische Universität München, Munich, Germany [email protected].
  2. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  3. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Endocrinology and Internal medicine, Aarhus University Hospital, Aarhus, Denmark Danish Diabetes Academy, Aarhus, Denmark.
  4. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Endocrinology and Internal medicine, Aarhus University Hospital, Aarhus, Denmark.
  5. Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
  6. GE Global Research, Munich, Germany.
  7. Institute of Medical Engineering, Technische Universität München, Munich, Germany.

PMID: 26272734 PMCID: PMC4562560 DOI: 10.14814/phy2.12474

Abstract

In the metabolism of acetate several enzymes are involved, which play an important role in free fatty acid oxidation. Fatty acid metabolism is altered in diabetes patients and therefore acetate might serve as a marker for pathological changes in the fuel selection of cells, as these changes occur in diabetes patients. Acetylcarnitine is a metabolic product of acetate, which enables its transport into the mitochondria for energy production. This study investigates whether the ratio of acetylcarnitine to acetate, measured by noninvasive hyperpolarized [1-(13)C]acetate magnetic resonance spectroscopy, could serve as a marker for myocardial, hepatic, and renal metabolic changes in rats with Streptozotocin (STZ)-induced diabetes in vivo. We demonstrate that the conversion of acetate to acetylcarnitine could be detected and quantified in all three organs of interest. More interestingly, we found that the hyperpolarized acetylcarnitine to acetate ratio was independent of blood glucose levels and prolonged hyperglycemia following diabetes induction in a type-1 diabetes model.

© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Keywords: Acetate; diabetes mellitus; hyperpolarization

References

  1. Microbiol Mol Biol Rev. 2005 Mar;69(1):12-50 - PubMed
  2. Hypertension. 2007 Jul;50(1):242-7 - PubMed
  3. Biochem J. 1993 Oct 1;295 ( Pt 1):61-6 - PubMed
  4. Contrast Media Mol Imaging. 2015 May-Jun;10(3):194-202 - PubMed
  5. Circ Cardiovasc Imaging. 2012 Mar;5(2):201-9 - PubMed
  6. Coron Artery Dis. 1996 Feb;7(2):116-23 - PubMed
  7. Biochem J. 1976 Feb 15;154(2):327-48 - PubMed
  8. Diabetes Metab Res Rev. 2013 Feb;29(2):125-9 - PubMed
  9. J Nucl Med. 1995 Sep;36(9):1595-601 - PubMed
  10. J Nucl Med. 1985 Jan;26(1):72-6 - PubMed
  11. J Magn Reson. 2013 Nov;236:26-30 - PubMed
  12. Am J Nucl Med Mol Imaging. 2012;2(1):33-47 - PubMed
  13. Magn Reson Med. 2015 Oct;74(4):1011-8 - PubMed
  14. Physiol Rev. 2010 Jan;90(1):207-58 - PubMed
  15. Eur J Nucl Med. 2001 May;28(5):651-68 - PubMed
  16. Magn Reson Med. 2014 May;71(5):1663-9 - PubMed
  17. Nucl Med Biol. 2012 Feb;39(2):287-94 - PubMed
  18. Diabetes. 2015 Aug;64(8):2735-43 - PubMed
  19. J Biol Chem. 2001 Apr 6;276(14):11420-6 - PubMed
  20. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12051-6 - PubMed
  21. NMR Biomed. 2013 May;26(5):557-68 - PubMed
  22. Physiol Rep. 2014 Dec 11;2(12):null - PubMed
  23. J Magn Reson. 2013 Oct;235:115-20 - PubMed
  24. Biochem J. 1974 Aug;142(2):401-11 - PubMed
  25. Biochim Biophys Acta. 2013 Aug;1830(8):4171-8 - PubMed
  26. J Biol Chem. 2009 Dec 25;284(52):36077-82 - PubMed

Publication Types