Display options
Share it on

Ann Clin Transl Neurol. 2015 Jul;2(7):748-55. doi: 10.1002/acn3.212. Epub 2015 May 25.

CSF neurofilament light chain reflects corticospinal tract degeneration in ALS.

Annals of clinical and translational neurology

Ricarda A L Menke, Elizabeth Gray, Ching-Hua Lu, Jens Kuhle, Kevin Talbot, Andrea Malaspina, Martin R Turner

Affiliations

  1. Nuffield Department of Clinical Neurosciences, University of Oxford Oxford, United Kingdom.
  2. Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, United Kingdom.
  3. Department of Neurology, University Hospital Basel Basel, Switzerland.

PMID: 26273687 PMCID: PMC4531057 DOI: 10.1002/acn3.212

Abstract

OBJECTIVE: Diffusion tensor imaging (DTI) is sensitive to white matter tract pathology. A core signature involving the corticospinal tracts (CSTs) has been identified in amyotrophic lateral sclerosis (ALS). Raised neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) is thought to reflect axonal damage in a range of neurological disorders. The relationship between these two measures was explored.

METHODS: CSF and serum NfL concentrations and DTI acquired at 3 Tesla on the same day were obtained from ALS patients (n = 25 CSF, 40 serum) and healthy, age-similar controls (n = 17 CSF, 25 serum). Within-group correlations between NfL and DTI measures of microstructural integrity in major white matter tracts (CSTs, superior longitudinal fasciculi [SLF], and corpus callosum) were performed using tract-based spatial statistics.

RESULTS: NfL levels were higher in patients compared to controls. CSF levels correlated with clinical upper motor neuron burden and rate of disease progression. Higher NfL levels were significantly associated with lower DTI fractional anisotropy and increased radial diffusivity in the CSTs of ALS patients, but not in controls.

INTERPRETATION: Elevated CSF and serum NfL is, in part, a result of CST degeneration in ALS. This highlights the wider potential for combining neurochemical and neuroimaging-based biomarkers in neurological disease.

References

  1. Neuroimage. 2009 Jan 1;44(1):83-98 - PubMed
  2. Neurology. 2006 Mar 28;66(6):852-6 - PubMed
  3. Eur J Neurosci. 2010 Nov;32(9):1490-6 - PubMed
  4. Brain. 2014 Sep;137(Pt 9):2546-55 - PubMed
  5. J Neurol Neurosurg Psychiatry. 2015 Mar;86(3):273-9 - PubMed
  6. J Clin Neurosci. 2005 Jun;12(5):588-9 - PubMed
  7. Neurology. 2003 Jan 28;60(2):219-23 - PubMed
  8. NeuroRx. 2004 Apr;1(2):213-25 - PubMed
  9. J Neurochem. 1996 Nov;67(5):2013-8 - PubMed
  10. Neuroimage. 2006 Sep;32(3):1090-9 - PubMed
  11. Eur J Neurol. 2015 Jan;22(1):215-8 - PubMed
  12. Neurology. 1987 Mar;37(3):529-32 - PubMed
  13. Eur J Neurol. 2007 Dec;14 (12 ):1329-33 - PubMed
  14. Neurology. 2015 Jun 2;84(22):2247-57 - PubMed
  15. PLoS One. 2013 Sep 20;8(9):e75091 - PubMed
  16. Parkinsonism Relat Disord. 2009 Mar;15(3):205-12 - PubMed
  17. PLoS One. 2012;7(6):e37720 - PubMed
  18. Amyotroph Lateral Scler Other Motor Neuron Disord. 2005 Dec;6(4):213-20 - PubMed
  19. J Neurol Sci. 2005 Jun 15;233(1-2):183-98 - PubMed
  20. J Neurosci Res. 1991 Sep;30(1):226-31 - PubMed
  21. J Neurol Neurosurg Psychiatry. 2011 Aug;82(8):843-9 - PubMed
  22. Biomark Med. 2012 Jun;6(3):319-37 - PubMed
  23. Amyotroph Lateral Scler Frontotemporal Degener. 2013 Dec;14(7-8):562-73 - PubMed
  24. Ann Neurol. 2014 Jan;75(1):116-26 - PubMed
  25. Arch Neurol. 2012 Nov;69(11):1493-9 - PubMed
  26. J Neurosci Res. 2001 Nov 1;66(3):510-6 - PubMed
  27. Eur J Neurol. 2012 Dec;19(12):1561-7 - PubMed
  28. NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 - PubMed
  29. Nat Rev Neurol. 2011 Oct 11;7(11):631-8 - PubMed
  30. BMC Neurol. 2013 May 29;13:54 - PubMed
  31. Neurology. 2010 Nov 2;75(18):1645-52 - PubMed

Publication Types

Grant support