Display options
Share it on

Front Plant Sci. 2015 Jun 25;6:472. doi: 10.3389/fpls.2015.00472. eCollection 2015.

5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley.

Frontiers in plant science

María-Teresa Solís, Ahmed-Abdalla El-Tantawy, Vanesa Cano, María C Risueño, Pilar S Testillano

Affiliations

  1. Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain.

PMID: 26161085 PMCID: PMC4479788 DOI: 10.3389/fpls.2015.00472

Abstract

Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs.

Keywords: Brassica napus; Hordeum vulgare; demethylating agents, totipotency; epigenetic inhibitors; microspore culture; microspore reprogramming

References

  1. Theor Appl Genet. 1989 Mar;77(3):325-31 - PubMed
  2. PLoS One. 2013 Aug 20;8(8):e72160 - PubMed
  3. Physiol Plant. 2014 Feb;150(2):271-91 - PubMed
  4. BMC Plant Biol. 2012 Aug 02;12:127 - PubMed
  5. Trends Cell Biol. 2008 May;18(5):236-43 - PubMed
  6. Mol Pharmacol. 1981 Mar;19(2):314-20 - PubMed
  7. Cytogenet Genome Res. 2005;109(1-3):166-74 - PubMed
  8. Annu Rev Cell Dev Biol. 2013;29:241-70 - PubMed
  9. J Exp Bot. 2012 Mar;63(5):2007-24 - PubMed
  10. Plant J. 2007 Jun;50(5):848-57 - PubMed
  11. Front Plant Sci. 2011 Oct 04;2:53 - PubMed
  12. Trends Plant Sci. 2007 Aug;12(8):368-75 - PubMed
  13. J Exp Bot. 2012 Nov;63(18):6431-44 - PubMed
  14. Plant Cell. 2006 Apr;18(4):805-14 - PubMed
  15. Development. 2013 Oct;140(19):4008-19 - PubMed
  16. Physiol Plant. 2013 Sep;149(1):104-13 - PubMed
  17. Nature. 2006 Jan 26;439(7075):493-6 - PubMed
  18. Biol Cell. 2005 Sep;97(9):709-22 - PubMed
  19. Trends Cell Biol. 2007 Mar;17(3):101-6 - PubMed
  20. Curr Opin Genet Dev. 2000 Apr;10(2):217-23 - PubMed
  21. Eur J Cell Biol. 2005 Jul;84(7):663-75 - PubMed
  22. J Plant Physiol. 2011 May 15;168(8):746-57 - PubMed
  23. J Struct Biol. 2000 Apr;129(2-3):223-32 - PubMed
  24. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11797-801 - PubMed
  25. Science. 2014 Aug 15;345(6198):822-5 - PubMed
  26. Natl Sci Rev. 2015 Jun;2(2):217-225 - PubMed
  27. Nature. 2004 Jul 22;430(6998):471-6 - PubMed
  28. FASEB J. 2012 Jan;26(1):449-59 - PubMed
  29. Cell Stem Cell. 2008 Nov 6;3(5):568-74 - PubMed
  30. J Exp Bot. 2011 Jul;62(11):3713-25 - PubMed
  31. Plant Biotechnol J. 2006 Mar;4(2):251-61 - PubMed
  32. BMC Plant Biol. 2010 Aug 18;10:178 - PubMed
  33. Plant Cell. 2010 Feb;22(2):307-20 - PubMed
  34. J Plant Physiol. 2005 Jan;162(1):47-54 - PubMed
  35. Cytogenet Genome Res. 2014;143(1-3):209-18 - PubMed
  36. Cytogenet Genome Res. 2014;143(1-3):200-8 - PubMed
  37. FEBS J. 2012 Nov;279(21):4081-94 - PubMed
  38. J Cell Sci. 1999 Dec;112 ( Pt 23):4397-404 - PubMed
  39. Nat Rev Mol Cell Biol. 2011 Jan;12(1):36-47 - PubMed
  40. Genes Dev. 2014 May 15;28(10):1042-7 - PubMed
  41. Genome. 2004 Apr;47(2):399-403 - PubMed
  42. Plant Cell Physiol. 2014 Jan;55(1):16-29 - PubMed
  43. Cytogenet Genome Res. 2014;143(1-3):51-9 - PubMed
  44. BMC Plant Biol. 2010 Jan 12;10:10 - PubMed
  45. BMC Plant Biol. 2014 Aug 21;14:224 - PubMed
  46. Plant Cell Rep. 2012 Dec;31(12):2165-76 - PubMed
  47. Plant Cell Physiol. 2015 Jul;56(7):1401-17 - PubMed
  48. Brief Funct Genomics. 2010 Dec;9(5-6):444-54 - PubMed
  49. Int J Dev Biol. 2002 Dec;46(8):1035-47 - PubMed

Publication Types