Display options
Share it on

Vasc Cell. 2015 Jun 24;7:6. doi: 10.1186/s13221-015-0031-1. eCollection 2015.

Therapeutic manipulation of angiogenesis with miR-27b.

Vascular cell

Dorina Veliceasa, Dauren Biyashev, Gangjian Qin, Sol Misener, Alexander Roy Mackie, Raj Kishore, Olga V Volpert

Affiliations

  1. Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL USA ; Department of Urology, University of Illinois at Chicago Medical College, Chicago, IL USA.
  2. Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA.
  3. Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL USA.
  4. Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA USA.
  5. Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL USA ; Northwestern University, Feinberg Cardiovascular Research Institute, Chicago, IL USA.

PMID: 26161255 PMCID: PMC4497374 DOI: 10.1186/s13221-015-0031-1

Abstract

BACKGROUND: Multiple studies demonstrated pro-angiogenic effects of microRNA (miR)-27b. Its targets include Notch ligand Dll4, Sprouty (Spry)-2, PPARγ and Semaphorin (SEMA) 6A. miR-27 effects in the heart are context-dependent: although it is necessary for ventricular maturation, targeted overexpression in cardiomyocytes causes hypertrophy and dysfunction during development. Despite significant recent advances, therapeutic potential of miR-27b in cardiovascular disease and its effects in adult heart remain unexplored. Here, we assessed the therapeutic potential of miR-27b mimics and inhibitors in rodent models of ischemic disease and cancer.

METHODS: We have used a number of models to demonstrate the effects of miR-27b mimicry and inhibition in vivo, including subcutaneous Matrigel plug assay, mouse models of hind limb ischemia and myocardial infarction and subcutaneous Lewis Lung carcinoma.

RESULTS: Using mouse model of myocardial infarction due to the coronary artery ligation, we showed that miR-27b mimic had overall beneficial effects, including increased vascularization, decreased fibrosis and increased ejection fraction. In mouse model of critical limb ischemia, miR-27b mimic also improved tissue re-vascularization and perfusion. In both models, miR-27b mimic clearly decreased macrophage recruitment to the site of hypoxic injury. In contrast, miR-27b increased the recruitment of bone marrow derived cells to the neovasculature, as was shown using mice reconstituted with fluorescence-tagged bone marrow. These effects were due, at least in part, to the decreased expression of Dll4, PPARγ and IL10. In contrast, blocking miR-27b significantly decreased vascularization and reduced growth of subcutaneous tumors and decreased BMDCs recruitment to the tumor vasculature.

CONCLUSIONS: Our study demonstrates the utility of manipulating miR-27b levels in the treatment of cardiovascular disease and cancer.

Keywords: Cancer; Cardiovascular; Ischemia; Therapeutic angiogenesis; miR-27b; miRNA

References

  1. J Pathol. 2014 Apr;232(5):499-508 - PubMed
  2. Lab Invest. 1992 Oct;67(4):519-28 - PubMed
  3. Mol Oncol. 2014 Feb;8(1):59-67 - PubMed
  4. Microcirculation. 2012 Apr;19(3):208-14 - PubMed
  5. Cardiovasc Res. 2008 Sep 1;79(4):581-8 - PubMed
  6. J Vis Exp. 2009 Jan 21;(23):null - PubMed
  7. Mol Cell Biochem. 2011 Jun;352(1-2):181-8 - PubMed
  8. Curr Opin Mol Ther. 2006 Aug;8(4):295-300 - PubMed
  9. J Mol Cell Cardiol. 2011 May;50(5):742-50 - PubMed
  10. Clin J Oncol Nurs. 2013 Aug 1;17(4):425-33 - PubMed
  11. Stem Cell Res. 2012 Mar;8(2):215-25 - PubMed
  12. Nature. 2011 Jan 20;469(7330):336-42 - PubMed
  13. Int J Exp Pathol. 2009 Jun;90(3):262-83 - PubMed
  14. Biochim Biophys Acta. 2014 Aug;1846(1):161-79 - PubMed
  15. PLoS One. 2014 Jun 19;9(6):e100664 - PubMed
  16. Blood. 2012 Mar 15;119(11):2679-87 - PubMed
  17. J Cell Physiol. 2012 Oct;227(10):3373-80 - PubMed
  18. Blood. 2012 Feb 9;119(6):1607-16 - PubMed
  19. Eur Heart J. 2011 May;32(10 ):1197-206 - PubMed
  20. Cancer Res. 2013 May 1;73(9):2884-96 - PubMed
  21. Circ Res. 2008 Oct 24;103(9):919-28 - PubMed
  22. Nat Rev Cardiol. 2013 Jul;10(7):387-96 - PubMed
  23. Curr Cardiol Rep. 2010 May;12(3):199-208 - PubMed
  24. Stem Cells. 2012 Apr;30(4):643-54 - PubMed
  25. Nat Protoc. 2009;4(12):1737-46 - PubMed
  26. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a006601 - PubMed
  27. J Biol Chem. 2013 Nov 29;288(48):34394-402 - PubMed
  28. Curr Pharm Des. 2004;10(20):2525-33 - PubMed
  29. Jpn Clin Med. 2014 Aug 12;5:19-23 - PubMed
  30. J Biol Chem. 2010 Apr 16;285(16):11846-53 - PubMed
  31. Dev Cell. 2008 Aug;15(2):261-71 - PubMed
  32. Curr Cardiol Rep. 2014 Feb;16(2):447 - PubMed
  33. Atherosclerosis. 2014 May;234(1):54-64 - PubMed
  34. J Am Coll Cardiol. 2007 Mar 13;49(10):1015-26 - PubMed
  35. PLoS One. 2014 Nov 03;9(11):e111839 - PubMed
  36. J Cell Biochem. 2010 Oct 15;111(3):727-34 - PubMed
  37. Gene. 2013 Aug 10;525(2):220-8 - PubMed
  38. Circulation. 2006 Mar 28;113(12 ):1605-14 - PubMed
  39. J Vasc Surg. 2014 Mar;59(3):786-93 - PubMed
  40. Ann N Y Acad Sci. 2001 Dec;953:75-84 - PubMed
  41. Cold Spring Harb Symp Quant Biol. 2006;71:513-21 - PubMed
  42. Cardiovasc Res. 2011 Jan 1;89(1):98-108 - PubMed
  43. Curr Issues Mol Biol. 2013;15:7-18 - PubMed
  44. J Intern Med. 2004 May;255(5):538-61 - PubMed
  45. J Cell Biochem. 2014 Sep;115(9):1539-48 - PubMed
  46. Atherosclerosis. 2012 Jun;222(2):314-23 - PubMed
  47. PLoS One. 2012;7(12):e52106 - PubMed
  48. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8287-92 - PubMed
  49. Nature. 2000 Sep 14;407(6801):249-57 - PubMed
  50. Oncologist. 2011;16(4):432-44 - PubMed
  51. J Clin Invest. 2013 Nov;123(11):4900-8 - PubMed
  52. Cell Res. 2012 Mar;22(3):516-27 - PubMed
  53. BioDrugs. 2010 Jun;24(3):183-94 - PubMed
  54. Int J Oncol. 2015 Feb;46(2):487-96 - PubMed
  55. BioDrugs. 2011 Jun 1;25(3):159-69 - PubMed
  56. Hepatology. 2013 Feb;57(2):533-42 - PubMed
  57. Oncogene. 2012 Apr 19;31(16):2039-48 - PubMed
  58. Biochem Biophys Res Commun. 2009 Dec 11;390(2):247-51 - PubMed
  59. Thromb Res. 2010 Apr;125 Suppl 2:S55-7 - PubMed
  60. Curr Opin Genet Dev. 2009 Jun;19(3):205-11 - PubMed
  61. Biochem Biophys Res Commun. 2010 Jun 11;396(4):989-93 - PubMed
  62. J Mol Cell Cardiol. 2012 Jan;52(1):13-20 - PubMed
  63. Cell. 2006 Jun 16;125(6):1111-24 - PubMed
  64. Diabetes. 2015 Apr;64(4):1407-19 - PubMed
  65. Vasa. 2013 Sep;42(5):331-9 - PubMed
  66. Arterioscler Thromb Vasc Biol. 2014 Jan;34(1):99-109 - PubMed
  67. Nature. 2005 Dec 15;438(7070):967-74 - PubMed
  68. Mol Med Rep. 2014 Sep;10 (3):1475-80 - PubMed

Publication Types

Grant support