Display options
Share it on

Front Bioeng Biotechnol. 2015 Jul 01;3:95. doi: 10.3389/fbioe.2015.00095. eCollection 2015.

Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon.

Frontiers in bioengineering and biotechnology

Benedikt Leis, Simon Heinze, Angel Angelov, Vu Thuy Trang Pham, Andrea Thürmer, Mohamed Jebbar, Peter N Golyshin, Wolfgang R Streit, Rolf Daniel, Wolfgang Liebl

Affiliations

  1. Department of Microbiology, School of Life Sciences Weihenstephan, Technische Universität München , Freising-Weihenstephan , Germany.
  2. Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Georg-August University Göttingen , Göttingen , Germany.
  3. Laboratoire de Microbiologie des Environnements Extrêmes-UMR 6197 (CNRS-Ifremer-UBO), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale , Plouzané , France.
  4. School of Biological Sciences, Bangor University , Bangor , UK.
  5. Fakultät für Mathematik, Informatik und Naturwissenschaften Biologie, Biozentrum Klein Flottbek, Universität Hamburg , Hamburg , Germany.

PMID: 26191525 PMCID: PMC4486847 DOI: 10.3389/fbioe.2015.00095

Abstract

Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8-70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential.

Keywords: archaeal endoglucanase; enzymatic characterization; extreme thermostable protein; functional screenings

References

  1. Lett Appl Microbiol. 2005;40(2):92-8 - PubMed
  2. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 - PubMed
  3. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  4. Adv Appl Microbiol. 2013;83:1-68 - PubMed
  5. J Mol Biol. 2008 Sep 5;381(3):670-80 - PubMed
  6. Appl Environ Microbiol. 2015 Mar;81(6):2125-36 - PubMed
  7. Appl Environ Microbiol. 2009 May;75(9):2964-8 - PubMed
  8. Extremophiles. 2004 Oct;8(5):421-9 - PubMed
  9. Appl Biochem Biotechnol. 2011 Aug;164(8):1323-38 - PubMed
  10. Nat Methods. 2011 Sep 29;8(10):785-6 - PubMed
  11. Curr Opin Biotechnol. 2011 Jun;22(3):465-72 - PubMed
  12. J Bacteriol. 1991 Jul;173(13):4155-62 - PubMed
  13. Appl Environ Microbiol. 2013 Aug;79(15):4551-63 - PubMed
  14. Chem Biol. 1998 Oct;5(10):R245-9 - PubMed
  15. FEBS Lett. 2012 Apr 5;586(7):1009-13 - PubMed
  16. Biochem J. 2012 Jan 1;441(1):95-104 - PubMed
  17. Biochem J. 2004 Sep 15;382(Pt 3):769-81 - PubMed
  18. Appl Microbiol Biotechnol. 2012 Jul;95(1):135-46 - PubMed
  19. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 - PubMed
  20. J Bacteriol. 2012 Sep;194(18):5091-100 - PubMed
  21. J Bacteriol. 1999 Jan;181(1):284-90 - PubMed
  22. Sci Rep. 2014 Aug 27;4:6205 - PubMed
  23. Biotechnol J. 2006 Jul-Aug;1(7-8):815-21 - PubMed
  24. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  25. Appl Environ Microbiol. 2003 Oct;69(10):6235-42 - PubMed
  26. J Mol Model. 2006 Sep;12(6):835-45 - PubMed
  27. Appl Microbiol Biotechnol. 2014 Oct;98(19):8099-109 - PubMed
  28. Appl Environ Microbiol. 1999 Dec;65(12 ):5338-44 - PubMed
  29. Appl Environ Microbiol. 2005 Feb;71(2):817-25 - PubMed
  30. Environ Microbiol. 2015 Feb;17(2):332-45 - PubMed
  31. Extremophiles. 2001 Aug;5(4):213-9 - PubMed
  32. Biochemistry. 2002 May 7;41(18):5720-9 - PubMed
  33. Biopolymers. 2009;92(1):1-8 - PubMed
  34. Biochem J. 2005 Jan 15;385(Pt 2):581-8 - PubMed
  35. Appl Environ Microbiol. 1987 Jan;53(1):211-3 - PubMed
  36. Front Microbiol. 2015 Apr 08;6:275 - PubMed
  37. Nucleic Acids Res. 2005 Oct 07;33(17):5691-702 - PubMed
  38. Appl Environ Microbiol. 1996 Dec;62(12):4478-85 - PubMed
  39. Sci Rep. 2012;2:354 - PubMed
  40. Biosci Biotechnol Biochem. 2006 Jul;70(7):1696-701 - PubMed
  41. Archaea. 2011;2011:693253 - PubMed
  42. J Biol Chem. 2000 Dec 29;275(52):41137-42 - PubMed

Publication Types