Display options
Share it on

Biol Sex Differ. 2015 Aug 06;6:13. doi: 10.1186/s13293-015-0031-0. eCollection 2015.

Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet.

Biology of sex differences

Padmaja Shastri, Justin McCarville, Martin Kalmokoff, Stephen P J Brooks, Julia M Green-Johnson

Affiliations

  1. Applied Bioscience Graduate Program and Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 Canada.
  2. Atlantic Food and Horticulture Research Center, Agriculture and Agri-Food Canada, Kentville, Nova Scotia B4N 1J5 Canada.
  3. Bureau of Nutritional Sciences, Health Canada, Ottawa, Ontario K1A 0K9 Canada.

PMID: 26251695 PMCID: PMC4527341 DOI: 10.1186/s13293-015-0031-0

Abstract

BACKGROUND: Mechanistic data to support health claims is often generated using rodent models, and the influence of prebiotic supplementation has largely been evaluated using male rodents. Given that sex-based differences in immune parameters are well recognized and recent evidence suggests differences in microbiota composition between sexes, validation of the effectiveness of prebiotics merits assessment in both males and females. Here, we have compared the effect of oligofructose (OF) supplementation on the fecal bacterial community, short chain fatty acid profiles, and gut mucosal and systemic immune parameters in male and female rats.

METHODS: Male and female rats were fed rodent chow or chow supplemented with OF (5 % w/w). Fecal community change was examined by analyzing 16S rRNA gene content. To compare effects of OF between sexes at the gut microbial and mucosal immune level, fecal short chain fatty acid and tissue cytokine profiles were measured. Serum lipopolysaccharide levels were also evaluated by the limulus amebocyte lysate assay as an indirect means of determining gut permeability between sexes.

RESULTS: In the fecal community of females, OF supplementation altered community structure by increasing abundance in the Phylum Bacteroidetes. In male rats, no changes in fecal community structure were observed, although fecal butyrate levels significantly increased. Liver Immunoglobulin A (IgA) levels were higher in males relative to females fed OF, and serum LPS concentrations were higher in males independent of diet. Females had higher basal levels of the regulatory cytokine interleukin-10 (IL-10) in the colon and liver, while males had higher basal levels of the pro-inflammatory cytokines IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) in the cecum and liver.

CONCLUSIONS: We have shown that male and female rat gut communities metabolize an OF-supplemented diet differently. Sex-specific responses in both the fecal community and systemic immune parameters suggest that this difference may result from an increase in the availability of gut peptidyl-nitrogen in the males. These findings demonstrate the importance of performing sex-comparative studies when investigating potential health effects of prebiotics using rodent models.

Keywords: Butyrate; IgA; Liver; Microbiota; Oligofructose; Sex

References

  1. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2117-22 - PubMed
  2. Science. 2013 Mar 1;339(6123):1084-8 - PubMed
  3. Aliment Pharmacol Ther. 2006 Sep 1;24(5):701-14 - PubMed
  4. Br J Nutr. 2006 Jun;95(6):1143-9 - PubMed
  5. Nutrients. 2013 May 29;5(6):1869-912 - PubMed
  6. J Nutr. 2002 Mar;132(3):472-7 - PubMed
  7. Appl Environ Microbiol. 2002 Oct;68(10):4986-95 - PubMed
  8. Dig Liver Dis. 2002 Sep;34 Suppl 2:S111-20 - PubMed
  9. Immunol Cell Biol. 2010 Mar-Apr;88(3):257-68 - PubMed
  10. Genome Res. 2006 Aug;16(8):995-1004 - PubMed
  11. J Appl Bacteriol. 1991 Jun;70(6):443-59 - PubMed
  12. J Nutr. 1997 Jan;127(1):130-6 - PubMed
  13. Biol Sex Differ. 2014 Aug 29;5:11 - PubMed
  14. PLoS One. 2013 Jul 05;8(7):e68367 - PubMed
  15. J AOAC Int. 2012 Jan-Feb;95(1):5-23 - PubMed
  16. J Nutr. 2013 Apr;143(4):533-40 - PubMed
  17. Inflamm Bowel Dis. 2005 Nov;11(11):977-85 - PubMed
  18. J AOAC Int. 2012 Jan-Feb;95(1):2-4 - PubMed
  19. Nutrients. 2015 May 06;7(5):3279-99 - PubMed
  20. J Nutr. 1999 Jul;129(7 Suppl):1412S-7S - PubMed
  21. J Nutr. 1997 May;127(5):717-23 - PubMed
  22. J Nutr. 2011 May;141(5):883-9 - PubMed
  23. Biol Sex Differ. 2013 May 07;4(1):10 - PubMed
  24. Inflamm Bowel Dis. 1999 Nov;5(4):285-94 - PubMed
  25. Immunology. 1997 Sep;92(1):131-7 - PubMed
  26. Gastroenterology. 1997 Mar;112(3):792-802 - PubMed
  27. Mol Biol Evol. 2010 Feb;27(2):221-4 - PubMed
  28. Trends Immunol. 2002 Nov;23(11):549-55 - PubMed
  29. J Appl Microbiol. 1998 Oct;85(4):769-77 - PubMed
  30. Am J Physiol Gastrointest Liver Physiol. 2005 Mar;288(3):G466-72 - PubMed
  31. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  32. Appl Environ Microbiol. 1996 Oct;62(10):3826-33 - PubMed
  33. J Nutr. 1995 Oct;125(10):2604-9 - PubMed
  34. Inflamm Bowel Dis. 2009 Mar;15(3):454-62 - PubMed
  35. Dig Dis Sci. 1991 Oct;36(10):1459-68 - PubMed
  36. J Nutr. 2005 Apr;135(4):837-42 - PubMed
  37. Can J Microbiol. 2006 Oct;52(10):924-33 - PubMed
  38. J Appl Microbiol. 2004;97(6):1166-77 - PubMed
  39. Vet Microbiol. 2006 Apr 16;114(1-2):165-70 - PubMed
  40. Nutrition. 2003 Jul-Aug;19(7-8):657-60 - PubMed
  41. Gut. 2004 Apr;53(4):530-5 - PubMed
  42. J Pathol. 2006 Jan;208(2):270-82 - PubMed
  43. Gut. 1988 Jun;29(6):809-15 - PubMed
  44. Nat Commun. 2014 Jul 29;5:4500 - PubMed
  45. Klin Wochenschr. 1965 Feb 1;43:174-5 - PubMed
  46. BMC Res Notes. 2014 Sep 19;7:660 - PubMed
  47. Annu Rev Nutr. 1998;18:385-411 - PubMed
  48. J Nutr Sci Vitaminol (Tokyo). 2003 Dec;49(6):414-21 - PubMed
  49. Annu Rev Immunol. 2012;30:149-73 - PubMed
  50. Annu Rev Immunol. 2009;27:147-63 - PubMed
  51. Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 - PubMed
  52. J Clin Gastroenterol. 2008 Sep;42 Suppl 3 Pt 2:S156-9 - PubMed
  53. Nature. 2011 Jun 15;474(7351):298-306 - PubMed
  54. J Nutr. 2009 Nov;139(11):2024-31 - PubMed
  55. Dig Dis Sci. 2005 Dec;50(12):2366-78 - PubMed
  56. Mol Endocrinol. 2004 Mar;18(3):747-60 - PubMed
  57. Br J Nutr. 2009 Jun;101(11):1653-63 - PubMed
  58. J Appl Microbiol. 2003;94(2):312-20 - PubMed
  59. J Nutr. 1999 Dec;129(12):2231-5 - PubMed
  60. J Appl Microbiol. 2013 May;114(5):1516-28 - PubMed
  61. Biosci Biotechnol Biochem. 2003 Apr;67(4):758-64 - PubMed
  62. J Microbiol Methods. 2006 Jul;66(1):87-95 - PubMed
  63. Br J Nutr. 2005 Apr;93 Suppl 1:S49-55 - PubMed
  64. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  65. Cell. 2004 Jul 23;118(2):229-41 - PubMed
  66. Hepatology. 2006 Feb;43(2 Suppl 1):S54-62 - PubMed
  67. Br J Nutr. 1996 Jun;75(6):881-92 - PubMed
  68. Gut. 2001 Jan;48(1):53-61 - PubMed
  69. Benef Microbes. 2010 Sep;1(3):211-27 - PubMed
  70. Clin Exp Immunol. 2004 Jul;137(1):52-8 - PubMed
  71. Mol Nutr Food Res. 2014 May;58(5):1098-110 - PubMed
  72. Cancer Res. 2000 Aug 15;60(16):4561-72 - PubMed
  73. BMC Bioinformatics. 2006 Feb 07;7:57 - PubMed
  74. Pediatr Res. 2001 Oct;50(4):538-43 - PubMed
  75. J Nutr. 2006 Jan;136(1):70-4 - PubMed
  76. J AOAC Int. 2012 Jan-Feb;95(1):50-60 - PubMed
  77. J Appl Microbiol. 1997 Sep;83(3):367-74 - PubMed
  78. Exp Anim. 2008 Oct;57(5):489-93 - PubMed
  79. J Nutr. 2003 Jul;133(7):2313-8 - PubMed
  80. Clin Sci (Lond). 2009 Sep 01;117(9):331-8 - PubMed

Publication Types