Display options
Share it on

Springerplus. 2015 Aug 04;4:393. doi: 10.1186/s40064-015-1184-3. eCollection 2015.

Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T.

SpringerPlus

Elif Diken, Tugba Ozer, Muzaffer Arikan, Zeliha Emrence, Ebru Toksoy Oner, Duran Ustek, Kazim Yalcin Arga

Affiliations

  1. Department of Bioengineering, Marmara University, Goztepe, 34722 Istanbul, Turkey.
  2. Department of Genetics, Institute for Experimental Medicine, Istanbul University, Capa, 34093 Istanbul, Turkey.
  3. Department of Medical Genetics, School of Medicine, REMER, Medipol University, 34810 Istanbul, Turkey.

PMID: 26251777 PMCID: PMC4523562 DOI: 10.1186/s40064-015-1184-3

Abstract

Halomonas smyrnensis AAD6T is a gram negative, aerobic, and moderately halophilic bacterium, and is known to produce high levels of levan with many potential uses in foods, feeds, cosmetics, pharmaceutical and chemical industries due to its outstanding properties. Here, the whole-genome analysis was performed to gain more insight about the biological mechanisms, and the whole-genome organization of the bacterium. Industrially crucial genes, including the levansucrase, were detected and the genome-scale metabolic model of H. smyrnensis AAD6T was reconstructed. The bacterium was found to have many potential applications in biotechnology not only being a levan producer, but also because of its capacity to produce Pel exopolysaccharide, polyhydroxyalkanoates, and osmoprotectants. The genomic information presented here will not only provide additional information to enhance our understanding of the genetic and metabolic network of halophilic bacteria, but also accelerate the research on systematical design of engineering strategies for biotechnology applications.

Keywords: Genome; Halomonas smyrnensis; Halophiles; Levan; Next-generation sequencing

References

  1. J Bacteriol. 2012 Oct;194(20):5690-1 - PubMed
  2. J Bacteriol. 2012 Jan;194(1):199-200 - PubMed
  3. Science. 1997 Sep 5;277(5331):1453-62 - PubMed
  4. Biotechnol Prog. 2013 Nov-Dec;29(6):1386-97 - PubMed
  5. J Bacteriol. 2011 Apr;193(7):1552-62 - PubMed
  6. J Genet Genomics. 2011 Mar 20;38(3):95-109 - PubMed
  7. J Bacteriol. 1997 Oct;179(20):6213-20 - PubMed
  8. Int J Syst Evol Microbiol. 2004 May;54(Pt 3):733-7 - PubMed
  9. Appl Microbiol Biotechnol. 2011 Mar;89(6):1729-40 - PubMed
  10. J Biol Chem. 2004 Feb 13;279(7):5588-96 - PubMed
  11. Environ Microbiol. 2011 Aug;13(8):1973-94 - PubMed
  12. Int Rev Cytol. 1988;113:187-231 - PubMed
  13. Int J Syst Evol Microbiol. 2013 Jan;63(Pt 1):10-8 - PubMed
  14. RNA. 2010 Aug;16(8):1469-77 - PubMed
  15. Molecules. 2012 Jun 12;17(6):7103-20 - PubMed
  16. Int J Syst Evol Microbiol. 2011 Nov;61(Pt 11):2600-5 - PubMed
  17. Nucleic Acids Res. 2009 Jan;37(Database issue):D274-8 - PubMed
  18. Stand Genomic Sci. 2011 Dec 31;5(3):379-88 - PubMed
  19. BMC Genomics. 2008 Feb 08;9:75 - PubMed
  20. J Bacteriol. 2004 Aug;186(15):5031-9 - PubMed
  21. Nat Biotechnol. 2010 Sep;28(9):977-82 - PubMed
  22. BMC Syst Biol. 2011 Jan 21;5:12 - PubMed
  23. Nature. 1997 Nov 20;390(6657):249-56 - PubMed
  24. J Biosci Bioeng. 2015 Apr;119(4):455-63 - PubMed
  25. Nucleic Acids Res. 2007;35(9):3100-8 - PubMed
  26. Biotechnol Adv. 2010 Nov-Dec;28(6):782-801 - PubMed
  27. Bioresour Technol. 2011 Jan;102(2):1788-94 - PubMed
  28. Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 - PubMed
  29. Environ Microbiol. 2012 Aug;14(8):1913-28 - PubMed
  30. Biomacromolecules. 2011 Jun 13;12(6):2251-6 - PubMed
  31. Nucleic Acids Res. 2002 Sep 15;30(18):3927-35 - PubMed
  32. Syst Biol. 2010 May;59(3):307-21 - PubMed
  33. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603 - PubMed
  34. J Ind Microbiol Biotechnol. 2002 Jan;28(1):56-63 - PubMed
  35. J Biol Chem. 2013 Jun 14;288(24):17769-81 - PubMed
  36. Microbiol Mol Biol Rev. 1998 Jun;62(2):504-44 - PubMed
  37. Science. 2011 Jun 3;332(6034):1163-6 - PubMed

Publication Types