Display options
Share it on

Biol Open. 2015 Aug 14;4(9):1132-42. doi: 10.1242/bio.012872.

The study of the Bithorax-complex genes in patterning CCAP neurons reveals a temporal control of neuronal differentiation by Abd-B.

Biology open

M Moris-Sanz, A Estacio-Gómez, E Sánchez-Herrero, F J Díaz-Benjumea

Affiliations

  1. Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain.
  2. Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c./Nicolás Cabrera 1, Universidad Autónoma, Madrid 28049, Spain [email protected].

PMID: 26276099 PMCID: PMC4582124 DOI: 10.1242/bio.012872

Abstract

During development, HOX genes play critical roles in the establishment of segmental differences. In the Drosophila central nervous system, these differences are manifested in the number and type of neurons generated by each neuroblast in each segment. HOX genes can act either in neuroblasts or in postmitotic cells, and either early or late in a lineage. Additionally, they can be continuously required during development or just at a specific stage. Moreover, these features are generally segment-specific. Lately, it has been shown that contrary to what happens in other tissues, where HOX genes define domains of expression, these genes are expressed in individual cells as part of the combinatorial codes involved in cell type specification. In this report we analyse the role of the Bithorax-complex genes - Ultrabithorax, abdominal-A and Abdominal-B - in sculpting the pattern of crustacean cardioactive peptide (CCAP)-expressing neurons. These neurons are widespread in invertebrates, express CCAP, Bursicon and MIP neuropeptides and play major roles in controlling ecdysis. There are two types of CCAP neuron: interneurons and efferent neurons. Our results indicate that Ultrabithorax and Abdominal-A are not necessary for specification of the CCAP-interneurons, but are absolutely required to prevent the death by apoptosis of the CCAP-efferent neurons. Furthermore, Abdominal-B controls by repression the temporal onset of neuropeptide expression in a subset of CCAP-efferent neurons, and a peak of ecdysone hormone at the end of larval life counteracts this repression. Thus, Bithorax complex genes control the developmental appearance of these neuropeptides both temporally and spatially.

© 2015. Published by The Company of Biologists Ltd.

Keywords: Abdominal-B; Bursicon; CCAP; Central nervous system; Drosophila; HOX genes

References

  1. Front Neuroendocrinol. 2002 Apr;23(2):179-99 - PubMed
  2. Fly (Austin). 2014;8(1):26-32 - PubMed
  3. Development. 2014 Nov;141(22):4366-74 - PubMed
  4. Genes Dev. 1990 Sep;4(9):1573-87 - PubMed
  5. Curr Opin Neurobiol. 2014 Aug;27:192-8 - PubMed
  6. Development. 2010 Sep 1;137(17):2951-60 - PubMed
  7. J Neurosci. 2008 Dec 31;28(53):14379-91 - PubMed
  8. PLoS One. 2008 Mar 26;3(3):e1896 - PubMed
  9. Development. 1992 Dec;116(4):855-63 - PubMed
  10. PLoS Biol. 2012;10(3):e1001280 - PubMed
  11. Development. 2003 May;130(9):1771-81 - PubMed
  12. Cell. 1994 Aug 26;78(4):617-24 - PubMed
  13. Nat Neurosci. 2014 Jul;17(7):899-907 - PubMed
  14. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):E748-56 - PubMed
  15. Cell. 1994 Nov 18;79(4):607-15 - PubMed
  16. Genes Dev. 1990 Jul;4(7):1209-23 - PubMed
  17. Dev Cell. 2014 Jun 23;29(6):635-48 - PubMed
  18. Neuron. 1993 Feb;10(2):279-91 - PubMed
  19. Biochem Biophys Res Commun. 2001 Feb 23;281(2):544-50 - PubMed
  20. Prog Neurobiol. 2002 Sep;68(1):1-84 - PubMed
  21. Development. 1990 Dec;110(4):1197-207 - PubMed
  22. Dev Biol. 1994 Apr;162(2):465-85 - PubMed
  23. Development. 1994 Jul;120(7):1983-95 - PubMed
  24. Horm Behav. 2005 Nov;48(4):418-29 - PubMed
  25. EMBO J. 1985 Aug;4(8):2035-43 - PubMed
  26. Cell. 2002 Aug 23;110(4):457-66 - PubMed
  27. Mol Cell. 1999 Feb;3(2):143-9 - PubMed
  28. Cell. 1993 Sep 24;74(6):1101-12 - PubMed
  29. Development. 2013 May;140(10):2139-48 - PubMed
  30. Development. 2003 Jun;130(12):2645-56 - PubMed
  31. J Neurosci. 2002 Jun 15;22(12):4906-17 - PubMed
  32. Mol Cell Endocrinol. 1981 Mar;21(3):181-97 - PubMed
  33. Cell. 2008 May 30;133(5):891-902 - PubMed
  34. Curr Biol. 2006 Jul 25;16(14):1395-407 - PubMed
  35. Development. 2010 Jan;137(1):123-31 - PubMed
  36. Development. 1990 Feb;108(2):323-9 - PubMed
  37. Development. 2004 Dec;131(24):6093-105 - PubMed
  38. Cell. 1986 Nov 21;47(4):627-36 - PubMed
  39. PLoS Genet. 2013;9(3):e1003307 - PubMed
  40. Dev Biol. 2013 Sep 15;381(2):482-90 - PubMed
  41. Prog Neurobiol. 2010 Sep;92(1):42-104 - PubMed
  42. Dev Biol. 2007 Aug 15;308(2):593-605 - PubMed
  43. Genes Dev. 2008 Jan 1;22(1):14-9 - PubMed
  44. Curr Biol. 2004 Jul 13;14(13):1208-13 - PubMed
  45. Curr Top Dev Biol. 2009;88:63-101 - PubMed
  46. Prog Neurobiol. 2000 Sep;62(1):89-111 - PubMed
  47. Development. 2013 Sep;140(17):3552-64 - PubMed
  48. Genes Dev. 1989 Sep;3(9):1424-36 - PubMed
  49. Curr Opin Neurobiol. 1996 Dec;6(6):842-50 - PubMed
  50. Genes Dev. 1993 Feb;7(2):229-40 - PubMed
  51. Cell. 1997 Oct 17;91(2):171-83 - PubMed
  52. Cell. 1985 Dec;43(2 Pt 1):507-19 - PubMed
  53. J Neurobiol. 2005 Sep 5;64(3):259-74 - PubMed
  54. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11423-8 - PubMed
  55. Nat Neurosci. 2011 Jan;14(1):37-44 - PubMed
  56. Dev Dyn. 2007 Dec;236(12):3562-8 - PubMed
  57. PLoS Genet. 2013;9(2):e1003252 - PubMed
  58. Development. 2010 Oct;137(19):3327-36 - PubMed
  59. Nature. 1985 Feb 14-20;313(6003):545-51 - PubMed
  60. Dev Biol. 2011 May 1;353(1):72-80 - PubMed
  61. Mech Dev. 1993 Jan;40(1-2):13-24 - PubMed
  62. EMBO J. 1990 Dec;9(13):4277-86 - PubMed
  63. Cell. 1994 Aug 26;78(4):603-15 - PubMed
  64. J Exp Biol. 1997 Mar;200(Pt 5):869-81 - PubMed
  65. Development. 2000 Dec;127(23):5083-92 - PubMed
  66. Curr Opin Neurobiol. 1995 Feb;5(1):28-35 - PubMed
  67. PLoS Genet. 2012;8(2):e1002501 - PubMed
  68. Annu Rev Cell Dev Biol. 2000;16:243-71 - PubMed

Publication Types