Display options
Share it on

Front Cell Neurosci. 2015 Aug 11;9:314. doi: 10.3389/fncel.2015.00314. eCollection 2015.

Differential regulation of apical-basolateral dendrite outgrowth by activity in hippocampal neurons.

Frontiers in cellular neuroscience

Yang Yuan, Eunju Seong, Li Yuan, Dipika Singh, Jyothi Arikkath

Affiliations

  1. Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA.
  2. Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.
  3. Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA ; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.

PMID: 26321915 PMCID: PMC4531327 DOI: 10.3389/fncel.2015.00314

Abstract

Hippocampal pyramidal neurons have characteristic dendrite asymmetry, characterized by structurally and functionally distinct apical and basolateral dendrites. The ability of the neuron to generate and maintain dendrite asymmetry is vital, since synaptic inputs received are critically dependent on dendrite architecture. Little is known about the role of neuronal activity in guiding maintenance of dendrite asymmetry. Our data indicate that dendrite asymmetry is established and maintained early during development. Further, our results indicate that cell intrinsic and global alterations of neuronal activity have differential effects on net extension of apical and basolateral dendrites. Thus, apical and basolateral dendrite extension may be independently regulated by cell intrinsic and network neuronal activity during development, suggesting that individual dendrites may have autonomous control over net extension. We propose that regulated individual dendrite extension in response to cell intrinsic and neuronal network activity may allow temporal control of synapse specificity in the developing hippocampus.

Keywords: apical–basolateral; dendrite; neuronal plasticity; pyramidal neuron; synapse development

References

  1. Science. 2014 Oct 31;346(6209):626-9 - PubMed
  2. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1482-7 - PubMed
  3. Nat Neurosci. 2006 May;9(5):642-9 - PubMed
  4. Neuron. 2003 Oct 9;40(2):277-95 - PubMed
  5. Nature. 2011 Apr 21;472(7343):351-5 - PubMed
  6. Eur J Neurosci. 2012 Jan;35(1):66-75 - PubMed
  7. J Neurosci. 2008 Jul 9;28(28):7047-56 - PubMed
  8. J Neurosci. 2009 Apr 29;29(17):5435-42 - PubMed
  9. Nat Rev Neurosci. 2008 Mar;9(3):206-21 - PubMed
  10. Neuron. 2011 Mar 10;69(5):885-92 - PubMed
  11. Neuron. 2011 Aug 25;71(4):640-55 - PubMed
  12. Cell. 2014 Sep 11;158(6):1335-47 - PubMed
  13. Neuron. 2013 Dec 18;80(6):1451-63 - PubMed
  14. Neurosci Lett. 2013 Mar 1;536:10-3 - PubMed
  15. PLoS One. 2015 Feb 23;10 (2):e0118482 - PubMed
  16. PLoS Biol. 2012;10(6):e1001350 - PubMed
  17. Neuron. 2011 Dec 22;72(6):1012-24 - PubMed
  18. Brain Cell Biol. 2006 Feb;35(1):29-38 - PubMed
  19. J Neurosci. 2011 May 25;31(21):7715-28 - PubMed
  20. Nat Protoc. 2012 Sep;7(9):1741-54 - PubMed
  21. Nature. 2012 Dec 13;492(7428):247-51 - PubMed
  22. Dev Neurobiol. 2013 Feb;73(2):142-51 - PubMed
  23. Curr Opin Neurobiol. 2012 Jun;22(3):366-71 - PubMed
  24. Neuron. 2005 Dec 8;48(5):757-71 - PubMed
  25. PLoS One. 2012;7(10):e46652 - PubMed
  26. Nature. 2009 Dec 24;462(7276):1065-9 - PubMed
  27. J Neurosci. 2013 Jan 2;33(1):327-33 - PubMed
  28. Nature. 2013 Nov 7;503(7474):121-5 - PubMed
  29. Nature. 2005 Aug 4;436(7051):704-8 - PubMed

Publication Types

Grant support