Display options
Share it on

Front Psychol. 2015 Aug 13;6:1188. doi: 10.3389/fpsyg.2015.01188. eCollection 2015.

Individual strategy ratings improve the control for task difficulty effects in arithmetic problem solving paradigms.

Frontiers in psychology

Nadja Tschentscher, Olaf Hauk

Affiliations

  1. Cognition and Brain Sciences Unit, Medical Research Council Cambridge, UK.

PMID: 26321997 PMCID: PMC4534780 DOI: 10.3389/fpsyg.2015.01188

Abstract

Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.

Keywords: Receiver Operating Characteristic; arithmetic cognition; neuroimaging; problem solving; task complexity

References

  1. Dev Neuropsychol. 2008;33(3):365-93 - PubMed
  2. Front Psychol. 2011 Sep 09;2:197 - PubMed
  3. Brain Res Cogn Brain Res. 2004 Jul;20(2):183-93 - PubMed
  4. Exp Brain Res. 2009 Jun;195(4):635-42 - PubMed
  5. Front Psychol. 2012 Oct 19;3:428 - PubMed
  6. Mem Cognit. 2006 Jan;34(1):207-16 - PubMed
  7. Neuropsychologia. 2011 Jul;49(9):2592-608 - PubMed
  8. Neuropsychologia. 2006;44(12):2500-7 - PubMed
  9. Am J Psychol. 2008 Spring;121(1):1-16 - PubMed
  10. Cogn Affect Behav Neurosci. 2009 Sep;9(3):270-85 - PubMed
  11. Cognition. 2013 Jul;128(1):35-44 - PubMed
  12. Front Psychol. 2013 Feb 13;4:50 - PubMed
  13. Neuropsychologia. 2009 Jan;47(2):604-8 - PubMed
  14. Mem Cognit. 2006 Jan;34(1):217-26 - PubMed
  15. Q J Exp Psychol (Hove). 2010 Jan;63(1):16-22 - PubMed
  16. Brain Res. 2007 Oct 3;1172:93-102 - PubMed
  17. Trends Cogn Sci. 2010 Apr;14(4):172-9 - PubMed
  18. Can J Exp Psychol. 2006 Sep;60(3):209-20 - PubMed
  19. Mem Cognit. 2003 Jun;31(4):516-28 - PubMed
  20. Cogn Process. 2012 Aug;13 Suppl 1:S161-4 - PubMed
  21. Neuroimage. 2014 May 15;92:369-80 - PubMed
  22. Neuroimage. 2011 Feb 1;54(3):2382-93 - PubMed
  23. Neuroimage. 2000 Oct;12(4):357-65 - PubMed
  24. J Exp Psychol Learn Mem Cogn. 2001 Jan;27(1):157-75 - PubMed
  25. Cogn Sci. 2005 May 6;29(3):313-41 - PubMed
  26. Med Decis Making. 1991 Apr-Jun;11(2):102-6 - PubMed
  27. Neuroimage. 2007 Apr 1;35(2):871-80 - PubMed
  28. J Cogn Neurosci. 1999 Nov;11(6):617-30 - PubMed
  29. Mem Cognit. 2007 Apr;35(3):454-63 - PubMed
  30. Neuroimage. 2009 May 15;46(1):308-18 - PubMed
  31. Learn Disabil Res Pract. 2005 Aug 1;20(3):142-155 - PubMed
  32. Biol Psychol. 2011 Apr;87(1):128-36 - PubMed
  33. Brain Res Cogn Brain Res. 2005 Mar;22(3):397-405 - PubMed

Publication Types