Display options
Share it on

EJNMMI Res. 2015 Dec;5(1):49. doi: 10.1186/s13550-015-0122-2. Epub 2015 Sep 17.

Further validation to support clinical translation of [(18)F]FTC-146 for imaging sigma-1 receptors.

EJNMMI research

Bin Shen, Michelle L James, Lauren Andrews, Christopher Lau, Stephanie Chen, Mikael Palner, Zheng Miao, Natasha C Arksey, Adam J Shuhendler, Shawn Scatliffe, Kota Kaneshige, Stanley M Parsons, Christopher R McCurdy, Ahmad Salehi, Sanjiv S Gambhir, Frederick T Chin

Affiliations

  1. Molecular Imaging Program at Stanford (MIPS) Department of Radiology Stanford University, Stanford, CA, 94305, USA.
  2. Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
  3. Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
  4. Department of Medicinal Chemistry and Pharmacology, The University of Mississippi, University, MS, 38677, USA.
  5. Veterans Administration Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
  6. Molecular Imaging Program at Stanford (MIPS) Department of Radiology Stanford University, Stanford, CA, 94305, USA. [email protected].

PMID: 26384292 PMCID: PMC4573970 DOI: 10.1186/s13550-015-0122-2

Abstract

BACKGROUND: This study aims to further evaluate the specificity and selectivity of [(18)F]FTC-146 and obtain additional data to support its clinical translation.

METHODS: The binding of [(19)F]FTC-146 to vesicular acetylcholine transporter (VAChT) was evaluated using [(3)H]vesamicol and PC12(A123.7) cells in an in vitro binding assay. The uptake and kinetics of [(18)F]FTC-146 in S1R-knockout mice (S1R-KO) compared to wild-type (WT) littermates was assessed using dynamic positron emission tomography (PET) imaging. Ex vivo autoradiography and histology were conducted using a separate cohort of S1R-KO/WT mice, and radiation dosimetry was calculated from WT mouse data (extrapolated for human dosing). Toxicity studies in Sprague-Dawley rats were performed with a dose equivalent to 250× the anticipated clinical dose of [(19)F]FTC-146 mass.

RESULTS AND DISCUSSION: VAChT binding assay results verified that [(19)F]FTC-146 displays negligible affinity for VAChT (K i = 450 ± 80 nM) compared to S1R. PET images demonstrated significantly higher tracer uptake in WT vs. S1R-KO brain (4.57 ± 1.07 vs. 1.34 ± 0.4 %ID/g at 20-25 min, n = 4, p < 0.05). In S1R-KO mice, it was shown that rapid brain uptake and clearance 10 min post-injection, which are consistent with previous S1R-blocking studies in mice. Three- to fourfold higher tracer uptake was observed in WT relative to S1R-KO mouse brains by ex vivo autoradiography. S1R staining coincided well with the autoradiographic data in all examined brain regions (r (2) = 0.85-0.95). Biodistribution results further demonstrated high [(18)F]FTC-146 accumulation in WT relative to KO mouse brain and provided quantitative information concerning tracer uptake in S1R-rich organs (e.g., heart, lung, pancreas) for WT mice vs. age-matched S1R-KO mice. The maximum allowed dose per scan in humans as extrapolated from mouse dosimetry was 33.19 mCi (1228.03 MBq). No significant toxicity was observed even at a 250X dose of the maximum carrier mass [(19)F]FTC-146 expected to be injected for human studies.

CONCLUSIONS: Together, these data indicate that [(18)F]FTC-146 binds specifically to S1Rs and is a highly promising radiotracer ready for clinical translation to investigate S1R-related diseases.

Keywords: Dosimetry; Sigma-1 receptor; Sigma-1 receptor knockout mice; Small animal PET; Toxicology; Vesicular acetylcholine transporter; [18F]FTC-146

References

  1. J Med Chem. 2012 Oct 11;55(19):8272-82 - PubMed
  2. Cardiovasc Res. 2012 Jan 1;93(1):6-7 - PubMed
  3. Eur J Nucl Med Mol Imaging. 2011 Mar;38(3):540-51 - PubMed
  4. Neuroscience. 2012 Mar 29;206:60-8 - PubMed
  5. Drug News Perspect. 2002 Dec;15(10):617-625 - PubMed
  6. Nucl Med Biol. 1997 Feb;24(2):127-34 - PubMed
  7. Cancer Res. 1995 Jan 15;55(2):408-13 - PubMed
  8. Nucl Med Biol. 2006 May;33(4):543-8 - PubMed
  9. Curr Med Chem. 2014;21(1):35-69 - PubMed
  10. Cell. 2007 Nov 2;131(3):596-610 - PubMed
  11. Psychopharmacology (Berl). 2004 Jul;174(3):301-19 - PubMed
  12. Expert Opin Ther Targets. 2011 Feb;15(2):145-55 - PubMed
  13. J Pain. 2012 Nov;13(11):1107-21 - PubMed
  14. Bioorg Med Chem. 2012 Jul 15;20(14):4422-9 - PubMed
  15. Nucl Med Biol. 2000 Apr;27(3):255-61 - PubMed
  16. CNS Drugs. 2004;18(5):269-84 - PubMed
  17. J Pharmacol Exp Ther. 1988 Oct;247(1):29-33 - PubMed
  18. Trends Pharmacol Sci. 2010 Dec;31(12):557-66 - PubMed
  19. Cent Nerv Syst Agents Med Chem. 2009 Sep;9(3):190-6 - PubMed
  20. J Nucl Med. 2014 Oct;55(10 ):1730-6 - PubMed
  21. J Nucl Med. 2014 Jan;55(1):147-53 - PubMed
  22. Synapse. 2006 May;59(6):350-8 - PubMed
  23. Mol Imaging Biol. 2006 Sep-Oct;8(5):284-91 - PubMed
  24. Pharmacol Ther. 2010 Sep;127(3):271-82 - PubMed
  25. Curr Pharm Des. 2012;18(7):884-901 - PubMed
  26. Curr Pharm Des. 2010;16(31):3519-37 - PubMed
  27. J Labelled Comp Radiopharm. 2013 Mar-Apr;56(3-4):215-24 - PubMed
  28. Biochem Biophys Res Commun. 1999 Aug 2;261(2):242-6 - PubMed
  29. Curr Neuropharmacol. 2005 Oct;3(4):267-80 - PubMed
  30. Eur J Pharmacol. 1994 Jun 15;268(1):9-18 - PubMed

Publication Types

Grant support