Display options
Share it on

Front Bioeng Biotechnol. 2015 May 15;3:54. doi: 10.3389/fbioe.2015.00054. eCollection 2015.

Network Neurodegeneration in Alzheimer's Disease via MRI Based Shape Diffeomorphometry and High-Field Atlasing.

Frontiers in bioengineering and biotechnology

Michael I Miller, J Tilak Ratnanather, Daniel J Tward, Timothy Brown, David S Lee, Michael Ketcha, Kanami Mori, Mei-Cheng Wang, Susumu Mori, Marilyn S Albert, Laurent Younes,

Affiliations

  1. Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA.
  2. Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA.
  3. Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA.
  4. Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD , USA.
  5. Department of Radiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA.
  6. Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA.
  7. Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Applied Mathematics and Statistics, Johns Hopkins University , Baltimore, MD , USA.

PMID: 26284236 PMCID: PMC4515983 DOI: 10.3389/fbioe.2015.00054

Abstract

This paper examines MRI analysis of neurodegeneration in Alzheimer's Disease (AD) in a network of structures within the medial temporal lobe using diffeomorphometry methods coupled with high-field atlasing in which the entorhinal cortex is partitioned into eight subareas. The morphometry markers for three groups of subjects (controls, preclinical AD, and symptomatic AD) are indexed to template coordinates measured with respect to these eight subareas. The location and timing of changes are examined within the subareas as it pertains to the classic Braak and Braak staging by comparing the three groups. We demonstrate that the earliest preclinical changes in the population occur in the lateral most sulcal extent in the entorhinal cortex (alluded to as transentorhinal cortex by Braak and Braak), and then proceeds medially which is consistent with the Braak and Braak staging. We use high-field 11T atlasing to demonstrate that the network changes are occurring at the junctures of the substructures in this medial temporal lobe network. Temporal progression of the disease through the network is also examined via changepoint analysis, demonstrating earliest changes in entorhinal cortex. The differential expression of rate of atrophy with progression signaling the changepoint time across the network is demonstrated to be signaling in the intermediate caudal subarea of the entorhinal cortex, which has been noted to be proximal to the hippocampus. This coupled to the findings of the nearby basolateral involvement in amygdala demonstrates the selectivity of neurodegeneration in early AD.

Keywords: cell–cell hypothesis; diffeomorphometry; entorhinal cortex; preclinical Alzheimer’s disease; shape

References

  1. Cereb Cortex. 1997 Dec;7(8):722-31 - PubMed
  2. Cell. 2011 Oct 28;147(3):498-508 - PubMed
  3. Curr Alzheimer Res. 2014;11(8):755-64 - PubMed
  4. Neurology. 1994 Dec;44(12):2308-14 - PubMed
  5. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15172-7 - PubMed
  6. Ann Neurol. 1992 Oct;32(4):555-63 - PubMed
  7. Curr Alzheimer Res. 2014;11(8):773-84 - PubMed
  8. Nat Rev Neurol. 2014 Apr;10 (4):204-16 - PubMed
  9. Neurology. 1993 Nov;43(11):2412-4 - PubMed
  10. Technology (Singap World Sci). 2014 Mar;2(1):36 - PubMed
  11. Acta Neuropathol. 1991;82(4):239-59 - PubMed
  12. Nat Rev Neurosci. 2011 Sep 07;12(10):585-601 - PubMed
  13. Nat Rev Mol Cell Biol. 2010 Apr;11(4):301-7 - PubMed
  14. Int J Biomed Imaging. 2010;2010:null - PubMed
  15. Neuroimage Clin. 2014 Apr 21;5:178-87 - PubMed
  16. Neuroimage. 2013 Feb 1;66:249-60 - PubMed
  17. Neurology. 1992 Mar;42(3 Pt 1):631-9 - PubMed
  18. NeuroRx. 2004 Apr;1(2):196-205 - PubMed
  19. Hum Brain Mapp. 2014 Aug;35(8):3701-25 - PubMed
  20. Neuroimage. 2008 Oct 1;42(4):1430-8 - PubMed
  21. Acta Neuropathol. 2000 Jul;100(1):29-35 - PubMed
  22. Neuroimage. 2007 Feb 1;34(3):1149-59 - PubMed
  23. Neuroimage. 2000 Dec;12(6):676-87 - PubMed
  24. Stat Methods Med Res. 2003 Oct;12(5):419-46 - PubMed
  25. Neuroimage Clin. 2013 Sep 16;3:352-60 - PubMed
  26. Neuroimage. 2003 Sep;20(1):359-77 - PubMed
  27. J Comp Neurol. 2013 Apr 1;521(5):1040-53 - PubMed
  28. J Neurosci. 1996 Jul 15;16(14):4491-500 - PubMed
  29. J Neurol Sci. 1990 Dec;100(1-2):165-73 - PubMed
  30. J Comp Neurol. 1980 May 15;191(2):255-81 - PubMed
  31. Alzheimer Dis Assoc Disord. 2003 Jul-Sep;17(3):177-95 - PubMed
  32. Acta Neuropathol Commun. 2013 May 08;1:2 - PubMed
  33. Hum Brain Mapp. 2015 Jan;36(1):258-87 - PubMed
  34. Ann Neurol. 1999 Mar;45(3):358-68 - PubMed
  35. Hum Brain Mapp. 2014 Mar;35(3):792-809 - PubMed
  36. Neurobiol Aging. 2015 Jan;36 Suppl 1:S3-S10 - PubMed
  37. Br J Psychiatry. 1982 Jun;140:566-72 - PubMed
  38. Mov Disord. 2014 Jul;29(8):988 - PubMed
  39. Arch Neurol. 1980 Oct;37(10):625-9 - PubMed
  40. Neurology. 1991 Mar;41(3):351-6 - PubMed
  41. Alzheimers Dement. 2011 May;7(3):280-92 - PubMed
  42. J Psychiatr Res. 1982-1983;17(1):37-49 - PubMed
  43. Cereb Cortex. 1991 Jan-Feb;1(1):103-16 - PubMed

Publication Types

Grant support