Display options
Share it on

Sci Rep. 2015 Sep 21;5:14249. doi: 10.1038/srep14249.

Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

Scientific reports

Kun Zhang, Huan-Huan Li, Peter Grünberg, Qiang Li, Sheng-Tao Ye, Yu-Feng Tian, Shi-Shen Yan, Zhao-Jun Lin, Shi-Shou Kang, Yan-Xue Chen, Guo-Lei Liu, Liang-Mo Mei

Affiliations

  1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
  2. Peter Grünberg Institute, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany.

PMID: 26387967 PMCID: PMC4585683 DOI: 10.1038/srep14249

Abstract

Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

References

  1. Phys Rev Lett. 2002 Feb 11;88(6):066603 - PubMed
  2. Phys Rev Lett. 2013 May 17;110(20):206601 - PubMed
  3. Nature. 2003 Nov 13;426(6963):162-5 - PubMed
  4. Science. 2000 Sep 1;289(5484):1530-1532 - PubMed
  5. Nat Mater. 2014 Jan;13(1):50-6 - PubMed
  6. Nature. 2005 Nov 17;438(7066):339-42 - PubMed
  7. Phys Rev Lett. 1995 Apr 17;74(16):3273-3276 - PubMed
  8. Phys Rev Lett. 1988 Nov 21;61(21):2472-2475 - PubMed
  9. Phys Rev Lett. 2008 Mar 28;100(12):127202 - PubMed
  10. Nature. 2009 Feb 26;457(7233):1112-5 - PubMed
  11. Phys Rev Lett. 2007 Mar 9;98(10):107602 - PubMed
  12. J Phys Condens Matter. 2006 Nov 22;18(46):10469-80 - PubMed

Publication Types