Display options
Share it on

Biomacromolecules. 2015 Oct 12;16(10):3217-25. doi: 10.1021/acs.biomac.5b00935. Epub 2015 Sep 29.

Utilizing Intrinsic Properties of Polyaniline to Detect Nucleic Acid Hybridization through UV-Enhanced Electrostatic Interaction.

Biomacromolecules

Partha Pratim Sengupta, Jared N Gloria, Dahlia N Amato, Douglas V Amato, Derek L Patton, Beddhu Murali, Alex S Flynt

Affiliations

  1. Department of Biological Sciences, ‡School of Polymers and High Performance Materials, and §School of Computing, University of Southern Mississippi , Hattiesburg, Mississippi 39406, United States.

PMID: 26388289 PMCID: PMC4822489 DOI: 10.1021/acs.biomac.5b00935

Abstract

Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.

References

  1. Bioconjug Chem. 1999 Nov-Dec;10(6):993-1004 - PubMed
  2. J Control Release. 2001 May 14;72(1-3):165-70 - PubMed
  3. Biosens Bioelectron. 2002 May;17(5):345-59 - PubMed
  4. Nat Mater. 2003 Jan;2(1):19-24 - PubMed
  5. Nucleic Acids Res. 2003 Oct 1;31(19):5490-500 - PubMed
  6. Biosens Bioelectron. 2005 Mar 15;20(9):1821-8 - PubMed
  7. BMC Biotechnol. 2005 Apr 25;5:10 - PubMed
  8. Anal Chem. 2005 May 1;77(9):2756-61 - PubMed
  9. Anal Bioanal Chem. 2006 Oct;386(3):525-31 - PubMed
  10. Anal Chem. 2007 Jul 1;79(13):5111-5 - PubMed
  11. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11400-5 - PubMed
  12. Nat Protoc. 2007;2(9):2148-51 - PubMed
  13. Annu Rev Biophys. 2008;37:465-87 - PubMed
  14. J Am Chem Soc. 2008 Aug 27;130(34):11338-43 - PubMed
  15. Biosens Bioelectron. 2009 Jan 1;24(5):1067-73 - PubMed
  16. Chemphyschem. 2009 Jan 12;10(1):206-10 - PubMed
  17. Biomaterials. 2009 Apr;30(11):2132-48 - PubMed
  18. Biomacromolecules. 2009 May 11;10(5):1077-83 - PubMed
  19. J Am Chem Soc. 2010 Feb 3;132(4):1252-4 - PubMed
  20. Nucleic Acids Res. 2011 Mar;39(6):e37 - PubMed
  21. Langmuir. 2011 Feb 1;27(3):874-7 - PubMed
  22. Nanoscale. 2011 Mar;3(3):967-9 - PubMed
  23. Chem Commun (Camb). 2011 Apr 7;47(13):3927-9 - PubMed
  24. Methods Mol Biol. 2011;751:437-52 - PubMed
  25. PLoS One. 2011;6(6):e20569 - PubMed
  26. ACS Comb Sci. 2012 Mar 12;14(3):191-6 - PubMed
  27. Biomacromolecules. 2013 Jun 10;14(6):1727-31 - PubMed
  28. Nanoscale. 2013 Aug 21;5(16):7098-140 - PubMed
  29. Biomacromolecules. 2014 Apr 14;15(4):1124-31 - PubMed
  30. Sensors (Basel). 2015 Feb 05;15(2):3801-29 - PubMed
  31. Nanomaterials (Basel). 2013 Aug 27;3(3):524-549 - PubMed

MeSH terms

Publication Types

Grant support