Display options
Share it on

Front Neurosci. 2015 Sep 02;9:305. doi: 10.3389/fnins.2015.00305. eCollection 2015.

Growth factor choice is critical for successful functionalization of nanoparticles.

Frontiers in neuroscience

Josephine Pinkernelle, Vittoria Raffa, Maria P Calatayud, Gerado F Goya, Cristina Riggio, Gerburg Keilhoff

Affiliations

  1. Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany ; Institute for Biochemistry and Cell Biology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany.
  2. Department of Biology, University of Pisa Pisa, Italy ; Institute of Life Science, Scuola Superiore Sant' Anna Pisa, Italy.
  3. Aragon Institute of Nanosciences, University of Zaragoza Zaragoza, Spain.
  4. Aragon Institute of Nanosciences, University of Zaragoza Zaragoza, Spain ; Department of Condensed Matter Physics, University of Zaragoza Spain.
  5. Institute of Life Science, Scuola Superiore Sant' Anna Pisa, Italy.
  6. Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany.

PMID: 26388717 PMCID: PMC4557102 DOI: 10.3389/fnins.2015.00305

Abstract

Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed.

Keywords: PC12 cells; functionalization; glial cell-line derived neurotrophic factor (GDNF); nanoparticles; nerve growth factor (NGF); organotypic spinal cord culture

References

  1. Exp Neurol. 2010 May;223(1):112-8 - PubMed
  2. Neuroscientist. 2003 Oct;9(5):343-53 - PubMed
  3. Biomaterials. 2014 Aug;35(24):6389-99 - PubMed
  4. J Cereb Blood Flow Metab. 2010 Jan;30(1):15-35 - PubMed
  5. Nano Lett. 2010 Oct 13;10(10):3933-9 - PubMed
  6. Exp Neurol. 2014 Nov;261:367-76 - PubMed
  7. BMC Neurosci. 2012 Mar 22;13:32 - PubMed
  8. Brain Sci. 2013 Aug 02;3(3):1182-97 - PubMed
  9. J Reconstr Microsurg. 2009 Jul;25(6):339-44 - PubMed
  10. Int J Pharm. 2010 May 10;390(2):214-24 - PubMed
  11. Biomed Tech (Berl). 2013 Dec;58(6):517-25 - PubMed
  12. J Neurotrauma. 2000 Oct;17(10):915-25 - PubMed
  13. Nanomedicine. 2015 Jan;11(1):19-29 - PubMed
  14. Glia. 2009 Sep;57(12 ):1316-25 - PubMed
  15. Spinal Cord. 2006 Sep;44(9):523-9 - PubMed
  16. Cell Tissue Res. 2012 Jul;349(1):15-26 - PubMed
  17. Nat Rev Neurosci. 2002 May;3(5):383-94 - PubMed
  18. Adv Drug Deliv Rev. 2010 Mar 8;62(3):284-304 - PubMed
  19. Phys Chem Chem Phys. 2014 Jan 28;16(4):1536-44 - PubMed
  20. Ann Neurol. 1998 Sep;44(3 Suppl 1):S121-5 - PubMed
  21. Exp Neurol. 2008 Feb;209(2):294-301 - PubMed
  22. Semin Cell Dev Biol. 2014 Jul;31:57-63 - PubMed
  23. J Cell Sci. 2003 Oct 1;116(Pt 19):3855-62 - PubMed
  24. J Neurosci. 2002 May 15;22(10):3953-62 - PubMed
  25. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70 - PubMed
  26. J Comp Neurol. 2007 Apr 10;501(5):669-90 - PubMed
  27. Mol Neurobiol. 2001 Aug-Dec;24(1-3):1-28 - PubMed
  28. Adv Drug Deliv Rev. 2009 Jun 21;61(6):467-77 - PubMed
  29. Nat Med. 2004 Jun;10(6):610-6 - PubMed
  30. Biomed Res Int. 2014;2014:698256 - PubMed
  31. Neuron. 1996 Aug;17(2):195-7 - PubMed
  32. Nat Nanotechnol. 2013 Oct;8(10):772-81 - PubMed
  33. Science. 1981 Nov 20;214(4523):931-3 - PubMed
  34. J R Soc Interface. 2013 Nov 13;11(90):20130676 - PubMed
  35. Cell Mol Life Sci. 2001 Jul;58(8):1021-35 - PubMed
  36. Nature. 1977 Aug 11;268(5620):501-4 - PubMed
  37. Exp Neurol. 2001 Oct;171(2):342-50 - PubMed
  38. Int J Nanomedicine. 2012;7:3155-66 - PubMed
  39. Biomaterials. 2015 Jan;39:105-13 - PubMed
  40. Brain Res Bull. 1999 Aug;49(6):377-91 - PubMed
  41. Mol Neurodegener. 2010 Apr 21;5:17 - PubMed
  42. Curr Opin Crit Care. 2012 Dec;18(6):651-60 - PubMed
  43. J Neurosci. 2004 Nov 3;24(44):9799-810 - PubMed
  44. Environ Health Perspect. 1989 Mar;80:127-42 - PubMed
  45. Prog Neurobiol. 2007 Jul;82(4):163-201 - PubMed
  46. Int J Hyperthermia. 2008 Sep;24(6):467-74 - PubMed
  47. ACS Chem Neurosci. 2015 Aug 19;6(8):1379-92 - PubMed
  48. Spine (Phila Pa 1976). 2007 Oct 1;32(21):2300-5 - PubMed
  49. Exp Neurol. 2004 Dec;190(2):263-75 - PubMed
  50. J Peripher Nerv Syst. 2009 Sep;14(3):165-76 - PubMed
  51. ACS Nano. 2011 Aug 23;5(8):6527-38 - PubMed
  52. Annu Rev Neurosci. 2007;30:153-79 - PubMed
  53. Neurochem Int. 2015 Feb;81:1-9 - PubMed
  54. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9771-5 - PubMed
  55. J Neurotrauma. 2011 Aug;28(8):1545-88 - PubMed
  56. J Neurosurg. 2014 Feb;120(2):493-501 - PubMed
  57. BMC Biotechnol. 2004 Oct 15;4:23 - PubMed
  58. Science. 2000 Feb 25;287(5457):1489-93 - PubMed
  59. Nature. 1995 Jan 26;373(6512):344-6 - PubMed
  60. Histochem Cell Biol. 2005 Jun;123(4-5):377-92 - PubMed
  61. J Cell Biol. 1993 Oct;123(2):455-65 - PubMed
  62. Gene Ther. 2002 Jan;9(2):102-9 - PubMed
  63. J Neurosci Methods. 2011 Jan 15;194(2):287-96 - PubMed
  64. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424-8 - PubMed
  65. PLoS One. 2013 Aug 13;8(8):e73422 - PubMed
  66. Mol Neurobiol. 2003 Jun;27(3):277-324 - PubMed
  67. Biotechniques. 2011 Mar;50(3):187-9 - PubMed
  68. Biomed Res Int. 2014;2014:267808 - PubMed
  69. Eur Radiol. 2003 Jun;13(6):1266-76 - PubMed
  70. Nat Rev Neurosci. 2012 Feb 15;13(3):183-93 - PubMed
  71. Lancet. 2002 Feb 2;359(9304):417-25 - PubMed
  72. Int J Mol Sci. 2015 Apr 10;16(4):8070-101 - PubMed
  73. Nat Protoc. 2007;2(12):3090-101 - PubMed
  74. Nanomedicine (Lond). 2010 Feb;5(2):217-32 - PubMed
  75. Nanomedicine. 2014 Oct;10(7):1549-58 - PubMed
  76. J Trauma. 1998 Jul;45(1):116-22 - PubMed
  77. PLoS One. 2010 Mar 18;5(3):e9752 - PubMed
  78. Nature. 1999 Sep 9;401(6749):184-8 - PubMed
  79. Science. 1993 May 21;260(5111):1130-2 - PubMed
  80. Nanoscale. 2015 Jan 21;7(3):1058-66 - PubMed
  81. Glia. 2013 Jul;61(7):1029-40 - PubMed
  82. Biomaterials. 2007 Jun;28(16):2572-81 - PubMed
  83. Trends Mol Med. 2004 Dec;10(12):580-3 - PubMed
  84. Scand J Surg. 2008;97(4):310-6 - PubMed
  85. Acc Chem Res. 2009 Aug 18;42(8):1097-107 - PubMed
  86. J Neuropathol Exp Neurol. 2003 Feb;62(2):127-36 - PubMed
  87. Int J Mol Sci. 2013 May 24;14(6):10852-68 - PubMed
  88. J Bone Joint Surg Am. 2013 Dec 4;95(23):2144-51 - PubMed
  89. BMC Neurosci. 2006 Jun 08;7:45 - PubMed
  90. Biomaterials. 2008 Feb;29(4):487-96 - PubMed
  91. Neurotoxicol Teratol. 2004 May-Jun;26(3):397-406 - PubMed
  92. Colloids Surf B Biointerfaces. 2014 Oct 1;122:674-83 - PubMed
  93. Biomaterials. 2005 Jun;26(18):3995-4021 - PubMed
  94. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10657-61 - PubMed
  95. Exp Cell Res. 2014 Oct 1;327(2):234-55 - PubMed
  96. Neuron. 2012 Aug 23;75(4):633-47 - PubMed
  97. Tissue Eng Part A. 2015 Apr;21(7-8):1409-21 - PubMed
  98. Nanomedicine. 2015 Aug;11(6):1467-79 - PubMed

Publication Types