Display options
Share it on

Front Med (Lausanne). 2015 Sep 02;2:61. doi: 10.3389/fmed.2015.00061. eCollection 2015.

Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [(18)F]LBT-999 in a Parkinson's Disease Rat Model.

Frontiers in medicine

Sophie Sérrière, Aurélie Doméné, Johnny Vercouillie, Céline Mothes, Sylvie Bodard, Nuno Rodrigues, Denis Guilloteau, Sylvain Routier, Guylène Page, Sylvie Chalon

Affiliations

  1. UMR INSERM U930, Université François Rabelais , Tours , France.
  2. Laboratoires Cyclopharma , Tours , France.
  3. UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d'Orléans , Orléans , France.
  4. UMR INSERM U930, Université François Rabelais , Tours , France ; CHRU de Tours, Hopital Bretonneau , Tours , France.
  5. EA3808 - CiMoTheMA, Université de Poitiers , Poitiers , France.

PMID: 26389120 PMCID: PMC4556971 DOI: 10.3389/fmed.2015.00061

Abstract

The inverse association between nicotine intake and Parkinson's disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [(18)F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [(3)H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD.

Keywords: 6-hydroxydopamine; PET; TSPO; autoradiography; dopamine transporter; neuroinflammation

References

  1. J Comp Neurol. 2004 Jan 12;468(3):334-46 - PubMed
  2. J Cereb Blood Flow Metab. 1991 Mar;11(2):314-22 - PubMed
  3. PLoS One. 2014 Aug 26;9(8):e105711 - PubMed
  4. Neurobiol Aging. 2015 Apr;36(4):1639-52 - PubMed
  5. Exp Neurol. 2015 Jan;263:277-84 - PubMed
  6. Brain Res. 1988 Mar 29;445(1):77-90 - PubMed
  7. Trends Pharmacol Sci. 2007 May;28(5):229-35 - PubMed
  8. Nucl Med Biol. 2014 Jan;41(1):106-13 - PubMed
  9. Synapse. 2001 Feb;39(2):167-74 - PubMed
  10. Nature. 2003 Jan 23;421(6921):384-8 - PubMed
  11. Nat Rev Neurol. 2015 Jan;11(1):25-40 - PubMed
  12. J Neuroimmune Pharmacol. 2009 Dec;4(4):419-29 - PubMed
  13. Synapse. 2012 Jul;66(7):573-83 - PubMed
  14. J Neurosci Res. 2013 Mar;91(3):462-71 - PubMed
  15. Cell Stem Cell. 2014 Nov 6;15(5):653-65 - PubMed
  16. Trends Pharmacol Sci. 2006 Aug;27(8):402-9 - PubMed
  17. Bioorg Med Chem. 2006 Feb 15;14 (4):1115-25 - PubMed
  18. Bioorg Med Chem Lett. 2008 Jun 15;18(12 ):3611-5 - PubMed
  19. Stroke. 2013 Jun;44(6):1743-7 - PubMed
  20. J Neurochem. 2004 Apr;89(2):337-43 - PubMed
  21. Br J Pharmacol. 2007 Aug;151(7):915-29 - PubMed
  22. J Med Chem. 2005 Jul 28;48(15):4705-45 - PubMed
  23. J Parkinsons Dis. 2013;3(2):161-72 - PubMed
  24. Neurobiol Dis. 1997;4(3-4):186-200 - PubMed
  25. J Med Chem. 2006 Jul 13;49(14 ):4425-36 - PubMed
  26. Eur J Pain. 2013 May;17 (5):692-703 - PubMed
  27. Neurobiol Dis. 2010 Mar;37(3):510-8 - PubMed
  28. Brain Res Bull. 1987 Jan;18(1):49-61 - PubMed
  29. J Neurochem. 1998 Oct;71(4):1635-42 - PubMed
  30. Mov Disord. 2012 Jul;27(8):947-57 - PubMed
  31. Exp Neurol. 2003 Dec;184(2):561-4 - PubMed
  32. J Nucl Med. 2007 Feb;48(2):277-87 - PubMed
  33. Biochem Pharmacol. 2013 Oct 15;86(8):1153-62 - PubMed
  34. Neurology. 1988 Aug;38(8):1285-91 - PubMed
  35. Prog Neurobiol. 2011 Dec;95(4):614-28 - PubMed
  36. Exp Neurol. 1998 Aug;152(2):259-77 - PubMed
  37. Trends Neurosci. 1996 Aug;19(8):312-8 - PubMed
  38. J Pharmacol Exp Ther. 2006 Apr;317(1):147-52 - PubMed
  39. Neurobiol Dis. 2012 Jun;46(3):508-26 - PubMed
  40. Stroke. 2012 Mar;43(3):844-50 - PubMed
  41. Neurosci Biobehav Rev. 2008;32(4):693-706 - PubMed
  42. Neuron. 2003 Sep 11;39(6):889-909 - PubMed
  43. Pharmacol Ther. 2008 Apr;118(1):1-17 - PubMed

Publication Types