Display options
Share it on

Front Plant Sci. 2015 Aug 04;6:603. doi: 10.3389/fpls.2015.00603. eCollection 2015.

Proteomic and metabolic traits of grape exocarp to explain different anthocyanin concentrations of the cultivars.

Frontiers in plant science

Alfredo S Negri, Bhakti Prinsi, Osvaldo Failla, Attilio Scienza, Luca Espen

Affiliations

  1. Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano Milano, Italy.

PMID: 26300900 PMCID: PMC4523781 DOI: 10.3389/fpls.2015.00603

Abstract

The role of grape berry skin as a protective barrier against damage by physical injuries and pathogen attacks requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e., flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir, and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance 100 proteins were characterized by LC-ESI-MS/MS. Through GC-MS, performed in Selected Ion Monitoring (SIM) mode, 57 primary metabolites were analyzed and the differences in abundance of 16 of them resulted statistically significant to ANOVA test. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g., glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan.

Keywords: Vitis vinifera; anthocyanins; exocarp grape berry; metabolomics; proteomics; stress response

References

  1. J Proteomics. 2015 Jan 15;113:206-25 - PubMed
  2. Physiol Plant. 2002 Apr;114(4):637-644 - PubMed
  3. J Plant Physiol. 2013 May 15;170(8):748-57 - PubMed
  4. Plant Physiol. 2001 Apr;125(4):1880-90 - PubMed
  5. BMC Plant Biol. 2014 Apr 02;14:87 - PubMed
  6. CSH Protoc. 2006 Dec 01;2006(7):null - PubMed
  7. J Proteome Res. 2007 Jan;6(1):358-66 - PubMed
  8. Plant Physiol. 2009 May;150(1):402-15 - PubMed
  9. Funct Integr Genomics. 2005 Jan;5(1):40-58 - PubMed
  10. Photosynth Res. 2005;83(2):265-78 - PubMed
  11. J Exp Bot. 2007;58(7):1851-62 - PubMed
  12. BMC Genomics. 2007 Nov 22;8:428 - PubMed
  13. J Plant Physiol. 1998 Oct;153(3-4):316-23 - PubMed
  14. Proteomics. 2004 Jan;4(1):201-15 - PubMed
  15. Trends Plant Sci. 2005 Jan;10(1):36-43 - PubMed
  16. Plant Cell. 2013 May;25(5):1840-54 - PubMed
  17. Science. 2006 Feb 10;311(5762):804-5 - PubMed
  18. J Agric Food Chem. 2006 Oct 4;54(20):7692-702 - PubMed
  19. Science. 2004 May 14;304(5673):982 - PubMed
  20. J Proteomics. 2010 Aug 5;73(9):1647-55 - PubMed
  21. BMC Plant Biol. 2010 Oct 19;10:222 - PubMed
  22. Molecules. 2010 Dec 09;15(12):9057-91 - PubMed
  23. Plant Cell Physiol. 2011 Apr;52(4):689-98 - PubMed
  24. Plant Mol Biol. 1994 Oct;26(1):495-502 - PubMed
  25. J Plant Physiol. 2008 Sep 8;165(13):1379-89 - PubMed
  26. Plant J. 2015 Mar;81(6):895-906 - PubMed
  27. Proteomics. 2009 May;9(9):2503-28 - PubMed
  28. Plant Physiol. 1986 Jul;81(3):802-6 - PubMed
  29. Proteomics. 2007 Sep;7(17):3154-70 - PubMed
  30. BMC Plant Biol. 2014 Jul 26;14:188 - PubMed
  31. Plant Mol Biol. 1996 Nov;32(3):565-9 - PubMed
  32. Plant Sci. 2000 Oct 16;159(1):87-95 - PubMed
  33. Planta. 2005 Nov;222(5):832-47 - PubMed
  34. Phytochemistry. 2011 Jul;72(10):1251-62 - PubMed
  35. Cell Mol Biol Lett. 2003;8(3):809-24 - PubMed
  36. BMC Plant Biol. 2011 Nov 02;11:149 - PubMed
  37. J Exp Bot. 2011 May;62(8):2521-69 - PubMed
  38. Arch Biochem Biophys. 2014 Feb 15;544:105-11 - PubMed
  39. Nat Biotechnol. 2014 Mar;32(3):223-6 - PubMed
  40. Phytochemistry. 2009 Jul-Aug;70(11-12):1329-44 - PubMed
  41. Plant Cell. 2009 Dec;21(12):4044-58 - PubMed
  42. J Exp Bot. 2003 Aug;54(389):1977-84 - PubMed
  43. Plant Physiol. 2010 Nov;154(3):1439-59 - PubMed
  44. J Exp Bot. 2008;59(13):3621-34 - PubMed
  45. Planta. 2001 May;213(1):20-8 - PubMed
  46. Funct Integr Genomics. 2011 Jun;11(2):341-55 - PubMed
  47. BMC Genomics. 2007 Jun 21;8:187 - PubMed
  48. J Nat Prod. 2000 Jul;63(7):1035-42 - PubMed
  49. New Phytol. 2009 Nov;184(3):607-18 - PubMed
  50. Bioinformatics. 2006 Dec 1;22(23):2962-5 - PubMed
  51. FEBS Lett. 2003 Apr 10;540(1-3):141-6 - PubMed
  52. J Agric Food Chem. 2006 Jul 26;54(15):5344-9 - PubMed
  53. Plant Physiol. 1996 Aug;111(4):1059-1066 - PubMed
  54. Bioinformatics. 2005 Apr 1;21(7):1280-1 - PubMed
  55. BMC Genomics. 2008 Aug 08;9:378 - PubMed
  56. Nat Protoc. 2006;1(1):387-96 - PubMed
  57. Plant Physiol. 2005 Oct;139(2):574-97 - PubMed
  58. Electrophoresis. 1988 Jun;9(6):255-62 - PubMed
  59. Genome Biol. 2013 Jun 07;14(6):r54 - PubMed
  60. Nature. 2007 Sep 27;449(7161):463-7 - PubMed

Publication Types