Display options
Share it on

Sci Rep. 2015 Sep 03;5:13696. doi: 10.1038/srep13696.

Ice-templated Self-assembly of VOPO4-Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes.

Scientific reports

Kwang Hoon Lee, Young-Woo Lee, Seung Woo Lee, Jeong Sook Ha, Sang-Soo Lee, Jeong Gon Son

Affiliations

  1. Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
  2. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
  3. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  4. Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Republic of Korea.
  5. KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.

PMID: 26333591 PMCID: PMC4558581 DOI: 10.1038/srep13696

Abstract

A simple ice-templated self-assembly process is used to prepare a three-dimensional (3D) and vertically porous nanocomposite of layered vanadium phosphates (VOPO4) and graphene nanosheets with high surface area and high electrical conductivity. The resulting 3D VOPO4-graphene nanocomposite has a much higher capacitance of 527.9 F g(-1) at a current density of 0.5 A g(-1), compared with ~247 F g(-1) of simple 3D VOPO4, with solid cycling stability. The enhanced pseudocapacitive behavior mainly originates from vertically porous structures from directionally grown ice crystals and simultaneously inducing radial segregation and forming inter-stacked structures of VOPO4-graphene nanosheets. This VOPO4-graphene nanocomposite electrode exhibits high surface area, vertically porous structure to the separator, structural stability from interstacked structure and high electrical conductivity, which would provide the short diffusion paths of electrolyte ions and fast transportation of charges within the conductive frameworks. In addition, an asymmetric supercapacitor (ASC) is fabricated by using vertically porous VOPO4-graphene as the positive electrode and vertically porous 3D graphene as the negative electrode; it exhibits a wide cell voltage of 1.6 V and a largely enhanced energy density of 108 Wh kg(-1).

References

  1. Small. 2012 Jun 25;8(12):1805-34 - PubMed
  2. Chem Commun (Camb). 2014 Oct 4;50(76):11132-4 - PubMed
  3. ACS Nano. 2012 May 22;6(5):4020-8 - PubMed
  4. Nat Commun. 2013;4:2431 - PubMed
  5. Nano Lett. 2013;13(11):5408-13 - PubMed
  6. ACS Nano. 2010 Jul 27;4(7):4324-30 - PubMed
  7. Chemphyschem. 2014 Feb 3;15(2):366-73 - PubMed
  8. Adv Mater. 2012 Dec 11;24(47):6348-55 - PubMed
  9. Science. 2008 Aug 1;321(5889):651-2 - PubMed
  10. Nano Lett. 2008 Sep;8(9):2664-8 - PubMed
  11. Sci Rep. 2014 Jan 13;4:3669 - PubMed
  12. Dalton Trans. 2014 May 7;43(17):6295-9 - PubMed
  13. Chem Commun (Camb). 2014 Sep 25;50(74):10768-77 - PubMed
  14. ACS Nano. 2014 May 27;8(5):4580-90 - PubMed
  15. Nat Commun. 2012;3:1241 - PubMed
  16. Nat Mater. 2005 Oct;4(10):787-93 - PubMed
  17. J Am Chem Soc. 2010 Jun 2;132(21):7472-7 - PubMed
  18. Chem Soc Rev. 2012 Jan 21;41(2):797-828 - PubMed
  19. Small. 2014 Sep 24;10(18):3803-10 - PubMed
  20. ACS Nano. 2014 Apr 22;8(4):3724-34 - PubMed
  21. Nano Lett. 2013 May 8;13(5):2078-85 - PubMed
  22. ACS Nano. 2010 Oct 26;4(10):5835-42 - PubMed
  23. Nanoscale. 2013 Jul 7;5(13):5752-7 - PubMed
  24. Adv Mater. 2012 Feb 14;24(7):938-44 - PubMed
  25. Nat Mater. 2008 Nov;7(11):845-54 - PubMed
  26. ACS Nano. 2011 Jan 25;5(1):436-42 - PubMed
  27. ACS Nano. 2011 Nov 22;5(11):8943-9 - PubMed
  28. Adv Mater. 2013 Aug 27;25(32):4437-44 - PubMed
  29. Adv Mater. 2013 Aug 7;25(29):3979-84 - PubMed

Publication Types