Display options
Share it on

EXCLI J. 2014 Nov 21;13:1239-53. eCollection 2014.

Drosophila melanogaster - an embryonic model for studying behavioral and biochemical effects of manganese exposure.

EXCLI journal

Ana Paula Lausmann Ternes, Ana Paula Zemolin, Litiele Cezar da Cruz, Gustavo Felipe da Silva, Ana Paula Fleig Saidelles, Mariane Trindade de Paula, Caroline Wagner, Ronaldo Medeiros Golombieski, Érico Marlon de Moraes Flores, Rochele Sogari Picoloto, Antônio Batista Pereira, Jeferson Luis Franco, Thaís Posser

Affiliations

  1. Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil.
  2. Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brasil.
  3. Programa de Pós Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, CEP 97500-970.
  4. Universidade Federal do Pampa, Campus Caçapava do Sul, RS, CEP 96570-000 Brasil.
  5. Laboratório de Biologia Molecular de Drosophila e Sequenciamento (LabDros), Universidade Federal de Santa Maria, Santa Maria, RS, 97300 000.

PMID: 26417337 PMCID: PMC4464430

Abstract

Embryonic animals are especially susceptible to metal exposure. Manganese (Mn) is an essential element, but in excess it can induce toxicity. In this study we used Drosophila melanogaster as an embryonic model to investigate biochemical and behavioral alterations due to Mn exposure. Flies were treated with standard medium supplemented with MnCl2 at 0.1 mM, 0.5 mM or 1 mM from the egg to the adult stage. At 0.5 mM and 1 mM Mn, newly ecloded flies showed significantly enhanced locomotor activity when assessed by negative geotaxis behavior. In addition, a significant increase in Mn levels (p < 0.0001) was observed, while Ca, Fe, Cu, Zn and S levels were significantly decreased. A significant drop in cell viability occurred in flies exposed to 1 mM Mn. There was also an induction of reactive oxygen species at 0.5 mM and 1 mM Mn (p < 0.05). At 1 mM, Mn increased Catalase (p < 0.005), Superoxide Dismutase (p < 0.005) and Hsp83 (p < 0.0001) mRNA expression, without altering Catalase or Superoxide Dismutase activity; the activity of Thioredoxin reductase and Glutatione-S-transferase enzymes was increased. Mn treatment did not alter ERK or JNK1/2 phosphorylation, but at 1 mM caused an inhibition of p38(MAPK) phosphorylation. Together these data suggest mechanisms of adaptation in the fly response to Mn exposure in embryonic life.

Keywords: Drosophila melanogaster; MAPK; Thioredoxin reductase; manganese; oxidative stress

References

  1. Rev Panam Salud Publica. 2009 Dec;26(6):541-8 - PubMed
  2. Indian J Med Res. 2008 Oct;128(4):484-500 - PubMed
  3. Biometals. 2011 Dec;24(6):1045-57 - PubMed
  4. Methods Enzymol. 1981;77:218-31 - PubMed
  5. Pediatr Neurol. 2008 Jan;38(1):20-6 - PubMed
  6. Peptides. 2009 Mar;30(3):571-4 - PubMed
  7. Pharmacol Rev. 2011 Jun;63(2):411-36 - PubMed
  8. Biol Trace Elem Res. 1996 Mar;51(3):249-57 - PubMed
  9. Methods. 2001 Dec;25(4):402-8 - PubMed
  10. J Exp Biol. 2012 May 1;215(Pt 9):1575-83 - PubMed
  11. Neurotoxicology. 2008 Jul;29(4):569-76 - PubMed
  12. Neurotoxicology. 2012 Aug;33(4):872-80 - PubMed
  13. Environ Res. 2011 Jan;111(1):156-63 - PubMed
  14. FASEB J. 2010 Dec;24(12 ):4989-5002 - PubMed
  15. Toxicol Appl Pharmacol. 2009 Oct 15;240(2):226-35 - PubMed
  16. Mol Cell Biochem. 2004 Apr;259(1-2):23-33 - PubMed
  17. Arch Med Res. 2004 May-Jun;35(3):185-93 - PubMed
  18. J Neurochem. 2009 Jul;110(1):378-89 - PubMed
  19. Methods Enzymol. 1984;105:121-6 - PubMed
  20. Annu Rev Pharmacol Toxicol. 2005;45:51-88 - PubMed
  21. Neurotoxicol Teratol. 2007 Mar-Apr;29(2):181-7 - PubMed
  22. Arch Environ Health. 1989 May-Jun;44(3):175-8 - PubMed
  23. PLoS Genet. 2013;9(9):e1003835 - PubMed
  24. J Neurochem. 2009 Aug;110(3):848-56 - PubMed
  25. Toxicol Appl Pharmacol. 2007 Jun 1;221(2):131-47 - PubMed
  26. Neurochem Int. 2003 Sep-Oct;43(4-5):475-80 - PubMed
  27. Free Radic Biol Med. 2009 Aug 15;47(4):449-57 - PubMed
  28. Environ Res. 2013 Feb;121:39-44 - PubMed
  29. Toxicol In Vitro. 2004 Feb;18(1):71-7 - PubMed
  30. J Child Adolesc Psychopharmacol. 2010 Apr;20(2):113-8 - PubMed
  31. Environ Toxicol. 2014 Jun;29(6):621-30 - PubMed
  32. Neurotoxicology. 2002 Oct;23(4-5):635-43 - PubMed
  33. Environ Res. 1999 Feb;80(2 Pt 1):99-102 - PubMed
  34. Environ Res. 1994 Feb;64(2):151-80 - PubMed
  35. CNS Neurol Disord Drug Targets. 2010 Aug;9(4):504-23 - PubMed
  36. Neurotoxicology. 2012 Oct;33(5):1117-27 - PubMed
  37. Biochem Biophys Res Commun. 2005 Mar 4;328(1):326-34 - PubMed
  38. Biochem Int. 1989 Nov;19(5):1117-24 - PubMed
  39. Arch Toxicol. 2014 Jan;88(1):47-64 - PubMed
  40. Neurotoxicology. 2013 Jul;37:118-26 - PubMed
  41. Neurotoxicology. 2003 Aug;24(4-5):667-74 - PubMed
  42. J Biol Chem. 2000 Aug 25;275(34):26556-65 - PubMed
  43. Oncogene. 1999 Nov 1;18(45):6087-93 - PubMed
  44. Biochem J. 2000 Feb 15;346 Pt 1:1-8 - PubMed
  45. Chem Res Toxicol. 2011 Oct 17;24(10 ):1644-52 - PubMed
  46. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8579-84 - PubMed
  47. Biol Res. 2006;39(1):45-57 - PubMed
  48. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  49. Neurochem Int. 2004 Dec;45(8):1175-83 - PubMed
  50. Sci Total Environ. 2004 Dec 1;334-335:409-16 - PubMed
  51. Environ Sci Technol. 2010 Dec 1;44(23 ):9182-8 - PubMed
  52. Neurochem Int. 2013 Apr;62(5):575-94 - PubMed
  53. Environ Res. 1997;73(1-2):92-100 - PubMed
  54. Food Chem Toxicol. 1995 Jul;33(7):559-63 - PubMed
  55. Mol Pharmacol. 2012 Mar;81(3):401-10 - PubMed
  56. Methods Enzymol. 1995;252:199-208 - PubMed
  57. Nature. 1997 Jul 31;388(6641):482-8 - PubMed
  58. Mol Aspects Med. 2005 Aug-Oct;26(4-5):353-62 - PubMed
  59. Science. 1997 Jan 3;275(5296):90-4 - PubMed

Publication Types