Display options
Share it on

Sci Rep. 2015 Sep 23;5:14374. doi: 10.1038/srep14374.

Approach to multifunctional device platform with epitaxial graphene on transition metal oxide.

Scientific reports

Jeongho Park, Tyson Back, William C Mitchel, Steve S Kim, Said Elhamri, John Boeckl, Steven B Fairchild, Rajesh Naik, Andrey A Voevodin

Affiliations

  1. Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXA) Wright-Patterson AFB, OH 45433-7707.
  2. University of Dayton Research Institute, Dayton, Ohio 45469-0170, USA.
  3. Center of Excellence for Thin Film Research and Surface Engineering, University of Dayton, Dayton, Ohio 45469-0170, USA.
  4. Departments of Physics, University of Dayton, Dayton, Ohio 45469.

PMID: 26395160 PMCID: PMC4585821 DOI: 10.1038/srep14374

Abstract

Heterostructures consisting of two-dimensional materials have shown new physical phenomena, novel electronic and optical properties, and new device concepts not observed in bulk material systems or purely three dimensional heterostructures. These new effects originated mostly from the van der Waals interaction between the different layers. Here we report that a new optical and electronic device platform can be provided by heterostructures of 2D graphene with a metal oxide (TiO2). Our novel direct synthesis of graphene/TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface using a molecular beam epitaxy approach and O2 intercalation method, which is compatible with wafer scale growth of heterostructures. As-grown heterostructures exhibit inherent photosensitivity in the visible light spectrum with high photo responsivity. The photo sensitivity is 25 times higher than that of reported graphene photo detectors. The improved responsivity is attributed to optical transitions between O 2p orbitals in the valence band of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric layers, respectively.

References

  1. Chem Commun (Camb). 2011 Feb 21;47(7):2032-4 - PubMed
  2. Science. 2011 Nov 4;334(6056):648-52 - PubMed
  3. Phys Rev Lett. 2009 Dec 11;103(24):246804 - PubMed
  4. Nano Lett. 2012 Sep 12;12(9):4503-7 - PubMed
  5. Small. 2013 Jun 24;9(12):2076-80 - PubMed
  6. Nano Lett. 2013 Jun 12;13(6):2412-7 - PubMed
  7. Adv Mater. 2012 Nov 14;24(43):5782-825 - PubMed
  8. Science. 2013 Jun 21;340(6139):1427-30 - PubMed
  9. Nat Nanotechnol. 2010 Jul;5(7):487-96 - PubMed
  10. Nano Lett. 2010 Nov 10;10(11):4285-94 - PubMed
  11. J Am Chem Soc. 2010 Jun 16;132(23):8175-9 - PubMed
  12. Nat Commun. 2013;4:1811 - PubMed
  13. Nat Mater. 2011 Apr;10(4):282-5 - PubMed
  14. Adv Mater. 2010 Oct 1;22(37):4140-5 - PubMed
  15. ACS Appl Mater Interfaces. 2013 Sep 25;5(18):9241-6 - PubMed
  16. J Phys Condens Matter. 2012 Aug 8;24(31):314208 - PubMed
  17. ACS Nano. 2012 Nov 27;6(11):9551-8 - PubMed
  18. Nature. 2013 May 30;497(7451):598-602 - PubMed
  19. Phys Chem Chem Phys. 2013 Apr 28;15(16):6025-33 - PubMed
  20. J Am Chem Soc. 2007 Nov 21;129(46):14156-7 - PubMed

Publication Types