Display options
Share it on

Sci Rep. 2015 Sep 23;5:14431. doi: 10.1038/srep14431.

Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds.

Scientific reports

S Hassan M Jafri, Henrik Löfås, Tobias Blom, Andreas Wallner, Anton Grigoriev, Rajeev Ahuja, Henrik Ottosson, Klaus Leifer

Affiliations

  1. Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 534, Uppsala SE-75121, Sweden.
  2. Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur Azad Jammu and Kashmir 10250, Pakistan.
  3. Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120, Sweden.
  4. Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala SE-75123, Sweden.
  5. Applied Material Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), Stockholm SE-10044, Sweden.

PMID: 26395225 PMCID: PMC5155674 DOI: 10.1038/srep14431

Abstract

Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

References

  1. J Am Chem Soc. 2001 Jun 13;123(23):5549-56 - PubMed
  2. J Am Chem Soc. 2001 May 30;123(21):5075-85 - PubMed
  3. Science. 2001 Oct 19;294(5542):571-4 - PubMed
  4. J Am Chem Soc. 2001 Dec 19;123(50):12632-41 - PubMed
  5. Science. 2003 May 30;300(5624):1413-6 - PubMed
  6. Science. 2003 Aug 29;301(5637):1221-3 - PubMed
  7. J Chem Phys. 2004 Jan 15;120(3):1542-54 - PubMed
  8. Nature. 2005 Aug 4;436(7051):677-80 - PubMed
  9. Science. 2006 Jan 20;311(5759):356-9 - PubMed
  10. Nano Lett. 2006 Mar;6(3):441-4 - PubMed
  11. Nature. 2007 Jan 25;445(7126):414-7 - PubMed
  12. J Am Chem Soc. 2007 Feb 28;129(8):2287-96 - PubMed
  13. Angew Chem Int Ed Engl. 2008;47(1):142-4 - PubMed
  14. J Am Chem Soc. 2008 Jan 9;130(1):318-26 - PubMed
  15. Nat Nanotechnol. 2006 Dec;1(3):173-81 - PubMed
  16. Nano Lett. 2009 Jan;9(1):117-21 - PubMed
  17. Nat Nanotechnol. 2010 Jan;5(1):54-60 - PubMed
  18. Nature. 2009 Dec 24;462(7276):1039-43 - PubMed
  19. Nano Lett. 2010 Mar 10;10(3):759-64 - PubMed
  20. Nat Mater. 2010 Oct;9(10):859-64 - PubMed
  21. Nanotechnology. 2010 Oct 29;21(43):435204 - PubMed
  22. Adv Mater. 2011 Apr 12;23(14):1583-608 - PubMed
  23. Langmuir. 2011 Jul 19;27(14):9057-67 - PubMed
  24. J Phys Condens Matter. 2008 Sep 17;20(37):374116 - PubMed
  25. Nanotechnology. 2007 Oct 24;18(42):424010 - PubMed
  26. Nanoscale. 2013 Jun 7;5(11):4673-7 - PubMed
  27. Chem Soc Rev. 2014 Nov 7;43(21):7378-411 - PubMed
  28. Chemistry. 2015 May 18;21(21):7716-20 - PubMed
  29. Adv Sci (Weinh). 2015 Apr 16;2(5):1500017 - PubMed
  30. Phys Rev B Condens Matter. 1991 Apr 15;43(11):8861-8869 - PubMed

Publication Types