Display options
Share it on

Clin Epigenetics. 2015 Sep 11;7:95. doi: 10.1186/s13148-015-0129-6. eCollection 2015.

Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells.

Clinical epigenetics

Olivia M de Goede, Hamid R Razzaghian, E Magda Price, Meaghan J Jones, Michael S Kobor, Wendy P Robinson, Pascal M Lavoie

Affiliations

  1. Child & Family Research Institute, 950 W 28th Avenue, Vancouver, BC V5Z 4H4 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada.
  2. Child & Family Research Institute, 950 W 28th Avenue, Vancouver, BC V5Z 4H4 Canada ; Department of Pediatrics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada.
  3. Child & Family Research Institute, 950 W 28th Avenue, Vancouver, BC V5Z 4H4 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada ; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada.
  4. Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3 Canada ; Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC V5Z 4H4 Canada.

PMID: 26366232 PMCID: PMC4567832 DOI: 10.1186/s13148-015-0129-6

Abstract

BACKGROUND: Genome-wide DNA methylation (DNAm) studies have proven extremely useful to understand human hematopoiesis. Due to their active DNA content, nucleated red blood cells (nRBCs) contribute to epigenetic and transcriptomic studies derived from whole cord blood. Genomic studies of cord blood hematopoietic cells isolated by fluorescence-activated cell sorting (FACS) may be significantly altered by heterotopic interactions with nRBCs during conventional cell sorting.

RESULTS: We report that cord blood T cells, and to a lesser extent monocytes and B cells, physically engage with nRBCs during FACS. These heterotopic interactions resulted in significant cross-contamination of genome-wide epigenetic and transcriptomic data. Formal exclusion of erythroid lineage-specific markers yielded DNAm profiles (measured by the Illumina 450K array) of cord blood CD4 and CD8 T lymphocytes, B lymphocytes, natural killer (NK) cells, granulocytes, monocytes, and nRBCs that were more consistent with expected hematopoietic lineage relationships. Additionally, we identified eight highly differentially methylated CpG sites in nRBCs (false detection rate <5 %, |Δβ| >0.50) that can be used to detect nRBC contamination of purified hematopoietic cells or to assess the impact of nRBCs on whole cord blood DNAm profiles. Several of these erythroid markers are located in or near genes involved in erythropoiesis (ZFPM1, HDAC4) or immune function (MAP3K14, IFIT1B), reinforcing a possible immune regulatory role for nRBCs in early life.

CONCLUSIONS: Heterotopic interactions between erythroid cells and white blood cells can result in contaminated cell populations if not properly excluded during cell sorting. Cord blood nRBCs have a distinct DNAm profile that can significantly skew epigenetic studies. Our findings have major implications for the design and interpretation of genome-wide epigenetic and transcriptomic studies using human cord blood.

References

  1. Obstet Gynecol. 1999 Mar;93(3):403-6 - PubMed
  2. Hum Pathol. 2008 Sep;39(9):1378-84 - PubMed
  3. Nature. 2010 Sep 16;467(7313):338-42 - PubMed
  4. Haematologica. 2010 Dec;95(12):2013-21 - PubMed
  5. Int J Biochem Cell Biol. 2014 May;50:112-22 - PubMed
  6. J Virol. 2015 Mar;89(5):2462-8 - PubMed
  7. Genome Biol. 2012 Jun 15;13(6):R44 - PubMed
  8. Blood. 2001 May 15;97(10):3152-60 - PubMed
  9. Front Physiol. 2014 Jan 30;5:9 - PubMed
  10. Cell. 1997 Jul 11;90(1):109-19 - PubMed
  11. Science. 2014 Sep 26;345(6204):1251033 - PubMed
  12. Blood. 2014 Apr 17;123(16):e37-45 - PubMed
  13. Genome Biol. 2014 Mar 05;15(3):R50 - PubMed
  14. Epigenetics Chromatin. 2013 Mar 03;6(1):4 - PubMed
  15. Curr Pharm Des. 2004;10(2):191-201 - PubMed
  16. Immunity. 2006 Jun;24(6):767-77 - PubMed
  17. Am J Obstet Gynecol. 2007 Sep;197(3):286.e1-8 - PubMed
  18. PLoS One. 2009 Oct 19;4(10):e7389 - PubMed
  19. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  20. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a001651 - PubMed
  21. Curr Protoc Immunol. 2009 Apr;Chapter 7:Unit7.1 - PubMed
  22. Nat Genet. 2009 Nov;41(11):1207-15 - PubMed
  23. Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2:17253-60 - PubMed
  24. J Obstet Gynaecol Res. 2007 Jun;33(3):274-8 - PubMed
  25. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1896-901 - PubMed
  26. Bioinformatics. 2008 Jul 1;24(13):1547-8 - PubMed
  27. PLoS One. 2012;7(7):e41361 - PubMed
  28. Bioinformatics. 2014 May 15;30(10):1431-9 - PubMed
  29. Semin Immunol. 2008 Aug;20(4):228-35 - PubMed
  30. EMBO J. 2005 Jul 6;24(13):2354-66 - PubMed
  31. PLoS Genet. 2007 Sep;3(9):1724-35 - PubMed
  32. Am J Clin Pathol. 1980 Sep;74(3):259-64 - PubMed
  33. Nature. 2013 Aug 22;500(7463):477-81 - PubMed
  34. Front Immunol. 2014 Aug 12;5:376 - PubMed
  35. Nat Rev Immunol. 2011 Jun 10;11(7):478-88 - PubMed
  36. Nat Rev Immunol. 2002 Feb;2(2):127-32 - PubMed
  37. Arch Dis Child Fetal Neonatal Ed. 2001 May;84(3):F211-5 - PubMed
  38. Obstet Gynecol. 2000 Jan;95(1):84-6 - PubMed
  39. BMC Bioinformatics. 2012 May 08;13:86 - PubMed
  40. Blood. 1999 Jun 1;93(11):4006-10 - PubMed
  41. Nature. 2013 Dec 5;504(7478):158-62 - PubMed
  42. Immunity. 2007 Apr;26(4):407-19 - PubMed

Publication Types