Display options
Share it on

Sci Rep. 2015 Sep 04;5:13657. doi: 10.1038/srep13657.

Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

Scientific reports

Yu-Ching Huang, Cheng-Si Tsao, Yi-Ju Cho, Kuan-Chen Chen, Kai-Ming Chiang, Sheng-Yi Hsiao, Chang-Wen Chen, Chun-Jen Su, U-Ser Jeng, Hao-Wu Lin

Affiliations

  1. Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan.
  2. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
  3. National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.

PMID: 26338280 PMCID: PMC4559897 DOI: 10.1038/srep13657

Abstract

The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

References

  1. Nature. 2013 Jul 18;499(7458):316-9 - PubMed
  2. Adv Mater. 2014 Oct;26(38):6647-52 - PubMed
  3. J Am Chem Soc. 2011 Aug 24;133(33):13064-73 - PubMed
  4. Nano Lett. 2014 Jul 9;14(7):4158-63 - PubMed
  5. Science. 2012 Nov 2;338(6107):643-7 - PubMed
  6. Science. 2014 Aug 1;345(6196):542-6 - PubMed
  7. J Am Chem Soc. 2009 May 6;131(17):6050-1 - PubMed
  8. Chem Rev. 2012 Oct 10;112(10):5488-519 - PubMed
  9. J Am Chem Soc. 2011 Mar 16;133(10):3284-7 - PubMed
  10. Adv Mater. 2014 Oct 8;26(37):6461-6 - PubMed
  11. Phys Rev Lett. 1986 Nov 17;57(20):2583-2586 - PubMed
  12. Nature. 2013 Sep 19;501(7467):395-8 - PubMed
  13. J Phys Chem Lett. 2015 Mar 5;6(5):875-80 - PubMed
  14. Adv Mater. 2015 Jun 10;27(22):3424-30 - PubMed
  15. ACS Nano. 2014 Feb 25;8(2):1674-80 - PubMed
  16. Phys Rev Lett. 2002 Mar 18;88(11):115502 - PubMed
  17. Adv Mater. 2013 Jul 19;25(27):3727-32 - PubMed
  18. Nat Commun. 2013;4:2761 - PubMed
  19. Adv Mater. 2014 Apr 2;26(13):2041-6 - PubMed
  20. Adv Mater. 2014 Jun 11;26(22):3748-54 - PubMed
  21. Nano Lett. 2011 Sep 14;11(9):3707-13 - PubMed
  22. ACS Nano. 2012 Feb 28;6(2):1657-66 - PubMed
  23. ACS Nano. 2011 May 24;5(5):4188-96 - PubMed
  24. ACS Nano. 2014 May 27;8(5):4730-9 - PubMed

Publication Types