Display options
Share it on

Opt Express. 2015 Jul 27;23(15):A882-95. doi: 10.1364/OE.23.00A882.

Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics.

Optics express

Benjamin Lipovšek, Anastasiia Solodovnyk, Karen Forberich, Edda Stern, Janez Krč, Christoph J Brabec, Marko Topič

PMID: 26367688 DOI: 10.1364/OE.23.00A882

Abstract

We developed an optical model for simulation and optimization of luminescent down-shifting (LDS) layers for photovoltaics. These layers consist of micron-sized phosphor particles embedded in a polymer binder. The model is based on ray tracing and employs an effective approach to scattering and photoluminescence modelling. Experimental verification of the model shows that the model accurately takes all the structural parameters and material properties of the LDS layers into account, including the layer thickness, phosphor particle volume concentration, and phosphor particle size distribution. Finally, using the verified model, complete organic solar cells on glass substrate covered with the LDS layers are simulated. Simulations reveal that an optimized LDS layer can result in more than 6% larger short-circuit current of the solar cell.

Publication Types