Display options
Share it on

Sci Rep. 2015 Oct 01;5:14659. doi: 10.1038/srep14659.

Demonstration of self-truncated ionization injection for GeV electron beams.

Scientific reports

M Mirzaie, S Li, M Zeng, N A M Hafz, M Chen, G Y Li, Q J Zhu, H Liao, T Sokollik, F Liu, Y Y Ma, L M Chen, Z M Sheng, J Zhang

Affiliations

  1. Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
  2. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
  3. College of Science, National University of Defense Technology, Changsha 410073, China.
  4. Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.
  5. SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK.

PMID: 26423136 PMCID: PMC4589762 DOI: 10.1038/srep14659

Abstract

Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications.

References

  1. Opt Express. 2014 Jun 2;22(11):12836-44 - PubMed
  2. Phys Rev Lett. 2015 May 8;114(18):184801 - PubMed
  3. Nature. 2004 Sep 30;431(7008):535-8 - PubMed
  4. Nat Commun. 2013;4:1988 - PubMed
  5. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5825-30 - PubMed
  6. Nature. 2004 Sep 30;431(7008):538-41 - PubMed
  7. Opt Express. 2014 Dec 1;22(24):29578-86 - PubMed
  8. Nature. 2004 Sep 30;431(7008):541-4 - PubMed
  9. Phys Rev Lett. 2009 Nov 20;103(21):215006 - PubMed
  10. Nature. 2006 Dec 7;444(7120):737-9 - PubMed
  11. Phys Rev Lett. 2009 Jul 17;103(3):035002 - PubMed
  12. Phys Rev Lett. 2012 Nov 16;109(20):204801 - PubMed
  13. Phys Rev Lett. 2010 Sep 3;105(10):105003 - PubMed
  14. Phys Rev Lett. 2011 Jul 15;107(3):035001 - PubMed
  15. Phys Rev Lett. 2010 Jan 15;104(2):025004 - PubMed
  16. Phys Rev Lett. 2011 Jul 22;107(4):045001 - PubMed
  17. Phys Rev Lett. 2010 Jan 15;104(2):025003 - PubMed
  18. Phys Rev Lett. 2014 Dec 12;113(24):245002 - PubMed
  19. Rev Sci Instrum. 2012 Jun;83(6):063301 - PubMed

Publication Types