Display options
Share it on

BMC Bioinformatics. 2015;16:S3. doi: 10.1186/1471-2105-16-S13-S3. Epub 2015 Sep 25.

Dynamical modeling of uncertain interaction-based genomic networks.

BMC bioinformatics

Daniel N Mohsenizadeh, Jianping Hua, Michael Bittner, Edward R Dougherty

PMID: 26423606 PMCID: PMC4596957 DOI: 10.1186/1471-2105-16-S13-S3

Abstract

BACKGROUND: Most dynamical models for genomic networks are built upon two current methodologies, one process-based and the other based on Boolean-type networks. Both are problematic when it comes to experimental design purposes in the laboratory. The first approach requires a comprehensive knowledge of the parameters involved in all biological processes a priori, whereas the results from the second method may not have a biological correspondence and thus cannot be tested in the laboratory. Moreover, the current methods cannot readily utilize existing curated knowledge databases and do not consider uncertainty in the knowledge. Therefore, a new methodology is needed that can generate a dynamical model based on available biological data, assuming uncertainty, while the results from experimental design can be examined in the laboratory.

RESULTS: We propose a new methodology for dynamical modeling of genomic networks that can utilize the interaction knowledge provided in public databases. The model assigns discrete states for physical entities, sets priorities among interactions based on information provided in the database, and updates each interaction based on associated node states. Whenever uncertainty in dynamics arises, it explores all possible outcomes. By using the proposed model, biologists can study regulation networks that are too complex for manual analysis.

CONCLUSIONS: The proposed approach can be effectively used for constructing dynamical models of interaction-based genomic networks without requiring a complete knowledge of all parameters affecting the network dynamics, and thus based on a small set of available data.

References

  1. Source Code Biol Med. 2008 Nov 14;3:16 - PubMed
  2. Sci Signal. 2015 Apr 7;8(371):fs8 - PubMed
  3. Nat Biotechnol. 2010 Sep;28(9):935-42 - PubMed
  4. Nucleic Acids Res. 2009 Jan;37(Database issue):D674-9 - PubMed
  5. J Cell Sci. 2005 Aug 15;118(Pt 16):3569-72 - PubMed
  6. J Biol Chem. 1995 Oct 27;270(43):25320-3 - PubMed
  7. Methods Mol Biol. 2013;1021:273-83 - PubMed
  8. Science. 1999 Apr 2;284(5411):92-6 - PubMed
  9. Cancer Res. 2000 Jul 1;60(13):3522-31 - PubMed
  10. Integr Biol (Camb). 2012 Nov;4(11):1323-37 - PubMed
  11. Nucleic Acids Res. 2011 Jan;39(Database issue):D685-90 - PubMed
  12. Apoptosis. 2006 Jun;11(6):1039-47 - PubMed
  13. Science. 2001 Apr 27;292(5517):727-30 - PubMed
  14. BMC Bioinformatics. 2006;7:56 - PubMed
  15. Cancer Res. 2011 Jun 1;71(11):3941-51 - PubMed
  16. Dev Biol. 2009 Jan 15;325(2):317-28 - PubMed
  17. Bioinformatics. 2003 Mar 1;19(4):524-31 - PubMed
  18. BMC Syst Biol. 2013;7:135 - PubMed
  19. Trends Biotechnol. 2001 Oct;19(10):401-6 - PubMed
  20. IEEE/ACM Trans Comput Biol Bioinform. 2015 Jul-Aug;12(4):938-50 - PubMed
  21. J Clin Invest. 2013 May;123(5):2155-68 - PubMed
  22. Bioinformatics. 2008 Mar 15;24(6):880-1 - PubMed
  23. Bioinformatics. 2008 Sep 1;24(17):1917-25 - PubMed
  24. BMC Syst Biol. 2012;6:133 - PubMed
  25. Cancers (Basel). 2012 Nov 08;4(4):1180-211 - PubMed
  26. Cell Death Dis. 2010;1:e40 - PubMed
  27. Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60 - PubMed
  28. Sci Transl Med. 2010 Jan 27;2(16):16ra7 - PubMed

MeSH terms

Publication Types

Grant support