Display options
Share it on

ACS Nano. 2015 Oct 27;9(10):10489-97. doi: 10.1021/acsnano.5b04744. Epub 2015 Sep 21.

Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells.

ACS nano

Marta N Sanz-Ortiz, Kadir Sentosun, Sara Bals, Luis M Liz-Marzán

Affiliations

  1. Bionanoplasmonics Laboratory, CIC biomaGUNE , 20009 Donostia-San Sebastián, Spain.
  2. EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
  3. Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain.

PMID: 26370658 PMCID: PMC4625167 DOI: 10.1021/acsnano.5b04744

Abstract

Noble metal nanoparticles are widely used as probes or substrates for surface enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and near-IR spectral ranges. Aiming at obtaining a versatile system with high SERS performance, we developed the synthesis of quasi-monodisperse, nonaggregated gold nanoparticles protected by radial mesoporous silica shells. The radial mesoporous channels were used as templates for the growth of gold tips branching out from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which additionally provides control over tip length, was successfully applied to gold nanoparticles with various shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder.

Keywords: SERS; gold nanorods; gold nanostars; mesoporous silica; plasmonics; radial pores

References

  1. Chem Commun (Camb). 2013 Apr 21;49(31):3215-7 - PubMed
  2. Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 - PubMed
  3. Langmuir. 2009 Dec 15;25(24):13894-9 - PubMed
  4. Nano Lett. 2009 Jan;9(1):485-90 - PubMed
  5. Nanoscale. 2012 Feb 7;4(3):931-9 - PubMed
  6. J Am Chem Soc. 2010 Aug 11;132(31):10903-10 - PubMed
  7. Chem Rev. 2011 Jun 8;111(6):3828-57 - PubMed
  8. Phys Chem Chem Phys. 2006 Feb 21;8(7):814-21 - PubMed
  9. J Am Chem Soc. 2012 Sep 5;134(35):14542-54 - PubMed
  10. J Am Chem Soc. 2013 Jul 3;135(26):9659-64 - PubMed
  11. Small. 2015 May 20;11(19):2323-32 - PubMed
  12. Angew Chem Int Ed Engl. 2012 Nov 5;51(45):11214-23 - PubMed
  13. ACS Nano. 2014 Jun 24;8(6):5833-42 - PubMed
  14. Nanoscale. 2013 Dec 21;5(24):12043-71 - PubMed
  15. Nano Lett. 2015 Aug 12;15(8):5427-37 - PubMed
  16. Nanotechnology. 2012 Feb 24;23(7):075102 - PubMed
  17. J Am Chem Soc. 2014 Apr 16;136(15):5631-9 - PubMed
  18. Nano Lett. 2008 Jan;8(1):369-73 - PubMed
  19. Nat Mater. 2009 Feb;8(2):126-31 - PubMed
  20. Science. 1998 Jan 23;279(5350):548-52 - PubMed
  21. Langmuir. 2010 Sep 21;26(18):14943-50 - PubMed
  22. J Phys Chem B. 2005 Aug 4;109(30):14257-61 - PubMed
  23. Chem Soc Rev. 2012 Jan 7;41(1):43-51 - PubMed
  24. ACS Nano. 2014 Aug 26;8(8):8392-406 - PubMed
  25. Adv Mater. 2012 Mar 15;24(11):1418-23 - PubMed
  26. Phys Chem Chem Phys. 2013 Apr 21;15(15):5301-11 - PubMed
  27. Nanotechnology. 2008 Jan 9;19(1):015606 - PubMed
  28. Angew Chem Int Ed Engl. 2012 Feb 27;51(9):2173-7 - PubMed

Publication Types

Grant support