Display options
Share it on

Biol Open. 2015 Sep 04;4(10):1222-8. doi: 10.1242/bio.012096.

The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model.

Biology open

Ilyas Singec, Rolf Knoth, Imre Vida, Michael Frotscher

Affiliations

  1. Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany Department of Neuropathology, Albert-Ludwigs-University Freiburg, D-79106 Freiburg, Germany [email protected].
  2. Department of Neuropathology, Albert-Ludwigs-University Freiburg, D-79106 Freiburg, Germany.
  3. Institute for Integrative Neuroanatomy, Charité, D-10117 Berlin, Germany.
  4. Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany.

PMID: 26340944 PMCID: PMC4610216 DOI: 10.1242/bio.012096

Abstract

The mouse subventricular zone (SVZ) generates large numbers of neuroblasts, which migrate in a distinct pathway, the rostral migratory stream (RMS), and replace specific interneurons in the olfactory bulb (OB). Here, we introduce an organotypic slice culture model that directly connects the RMS to the hippocampus as a new destination. RMS neuroblasts widely populate the hippocampus and undergo cellular differentiation. We demonstrate that RMS cells give rise to various neuronal subtypes and, surprisingly, to CA1 pyramidal neurons. Pyramidal neurons are typically generated before birth and are lost in various neurological disorders. Hence, this unique slice culture model enables us to investigate their postnatal genesis under defined in vitro conditions from the RMS, an unanticipated source for hippocampal pyramidal neurons.

© 2015. Published by The Company of Biologists Ltd.

Keywords: Cellular plasticity; Microenvironment; Neuronal differentiation; Organotypic slice culture; Pyramidal neuron; Rostral migratory stream

References

  1. Science. 2007 Jul 20;317(5836):381-4 - PubMed
  2. Neuroscience. 2007 Jun 8;146(4):1704-18 - PubMed
  3. Nat Neurosci. 2014 Feb;17 (2):207-14 - PubMed
  4. Neuron. 1993 Jul;11(1):173-89 - PubMed
  5. Nat Neurosci. 2009 Dec;12(12):1524-33 - PubMed
  6. Trends Neurosci. 2004 Aug;27(8):447-52 - PubMed
  7. Brain Res. 2009 Oct 27;1295:1-12 - PubMed
  8. Trends Neurosci. 2008 Aug;31(8):392-400 - PubMed
  9. J Neurobiol. 2001 Dec;49(4):326-38 - PubMed
  10. Nat Rev Neurosci. 2008 Jan;9(1):26-35 - PubMed
  11. Science. 2005 Jun 24;308(5730):1923-7 - PubMed
  12. Cell Stem Cell. 2012 Jun 14;10(6):698-708 - PubMed
  13. Cell. 2002 Aug 23;110(4):429-41 - PubMed
  14. Nature. 1999 Jul 22;400(6742):331-6 - PubMed
  15. J Cell Biol. 2005 Jan 31;168(3):415-27 - PubMed
  16. PLoS One. 2010 Jan 29;5(1):e8809 - PubMed
  17. Cell. 2014 Feb 27;156(5):1072-83 - PubMed
  18. Nat Med. 2002 Sep;8(9):963-70 - PubMed
  19. Physiol Rev. 2014 Oct;94(4):991-1026 - PubMed
  20. Development. 2004 Oct;131(20):5117-25 - PubMed
  21. Nat Neurosci. 2002 Oct;5(10):939-45 - PubMed
  22. J Neurosci. 2009 Apr 1;29(13):4172-88 - PubMed
  23. Trends Cell Biol. 2014 Oct;24(10):558-63 - PubMed
  24. J Neurosci Methods. 1991 Apr;37(2):173-82 - PubMed
  25. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14895-900 - PubMed
  26. Trends Neurosci. 1997 Oct;20(10):471-7 - PubMed
  27. Mol Cell Neurosci. 2014 Jul;61:176-86 - PubMed
  28. Brain Struct Funct. 2016 Jan;221(1):239-60 - PubMed
  29. Hippocampus. 1996;6(4):347-470 - PubMed
  30. J Comp Neurol. 2002 Oct 14;452(2):139-53 - PubMed
  31. Science. 1996 Feb 16;271(5251):978-81 - PubMed
  32. Neuron. 1997 May;18(5):779-91 - PubMed
  33. Nature. 2000 Jun 22;405(6789):951-5 - PubMed

Publication Types