Display options
Share it on

Nat Commun. 2015 Sep 24;6:8105. doi: 10.1038/ncomms9105.

Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene.

Nature communications

Momchil T Mihnev, John R Tolsma, Charles J Divin, Dong Sun, Reza Asgari, Marco Polini, Claire Berger, Walt A de Heer, Allan H MacDonald, Theodore B Norris

Affiliations

  1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA.
  2. Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA.
  3. Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.
  4. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
  5. School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
  6. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa I-56126, Italy.
  7. Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, Genova I-16163, Italy.
  8. School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
  9. Institut Neel, CNRS UJF-INP, Grenoble 38042, France.
  10. King Abdulaziz University, Jeddah 22254, Saudi Arabia.

PMID: 26399955 PMCID: PMC4598362 DOI: 10.1038/ncomms9105

Abstract

In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.

References

  1. Phys Rev Lett. 2012 Dec 7;109(23):236602 - PubMed
  2. Phys Rev Lett. 2011 Nov 18;107(21):216603 - PubMed
  3. Nano Lett. 2009 Jan;9(1):7-11 - PubMed
  4. Nano Lett. 2013 Feb 13;13(2):524-30 - PubMed
  5. Phys Rev Lett. 1994 Dec 26;73(26):3572-3575 - PubMed
  6. Science. 2013 Jun 14;340(6138):1311-4 - PubMed
  7. Anal Chem. 2011 Jun 15;83(12):4342-68 - PubMed
  8. Phys Rev Lett. 2008 Mar 28;100(12):125504 - PubMed
  9. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16900-5 - PubMed
  10. Nat Commun. 2013;4:1987 - PubMed
  11. Nat Nanotechnol. 2012 Nov;7(11):699-712 - PubMed
  12. Chem Rev. 2004 Apr;104(4):1759-79 - PubMed
  13. Phys Rev Lett. 2009 Nov 27;103(22):226803 - PubMed
  14. Phys Rev Lett. 2009 Feb 27;102(8):086809 - PubMed
  15. Phys Rev B Condens Matter. 1986 Jul 15;34(2):979-993 - PubMed
  16. Science. 2006 May 26;312(5777):1191-6 - PubMed
  17. Phys Rev Lett. 2009 May 22;102(20):206410 - PubMed
  18. Nat Mater. 2013 Dec;12(12):1119-24 - PubMed
  19. Nature. 2014 Feb 20;506(7488):349-54 - PubMed
  20. Nature. 2013 Jul 25;499(7459):419-25 - PubMed
  21. Phys Rev Lett. 2010 Apr 2;104(13):136802 - PubMed
  22. Nano Lett. 2011 Nov 9;11(11):4902-6 - PubMed
  23. Phys Rev Lett. 2008 Oct 10;101(15):157402 - PubMed
  24. Phys Rev Lett. 2012 Sep 7;109(10):106602 - PubMed
  25. Nat Nanotechnol. 2014 Apr;9(4):273-8 - PubMed
  26. Nano Lett. 2014 Mar 12;14(3):1578-82 - PubMed
  27. Appl Opt. 1997 Oct 20;36(30):7853-9 - PubMed

Publication Types