Display options
Share it on

Gene Regul Syst Bio. 2015 Aug 10;9:15-26. doi: 10.4137/GRSB.S25172. eCollection 2015.

Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats.

Gene regulation and systems biology

Bai Xue, Jing Nie, Xi Wang, Debra C DuBois, William J Jusko, Richard R Almon

Affiliations

  1. Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
  2. Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
  3. Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
  4. Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.

PMID: 26309393 PMCID: PMC4533846 DOI: 10.4137/GRSB.S25172

Abstract

Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance.

Keywords: diabetes; gene expression; high fat diet; microarray

References

  1. Int J Clin Pract Suppl. 2007 Jun;(153):3-9 - PubMed
  2. Cardiovasc Res. 2009 Aug 1;83(3):566-74 - PubMed
  3. Commun Integr Biol. 2010 Sep;3(5):405-8 - PubMed
  4. PLoS One. 2007 Sep 12;2(9):e882 - PubMed
  5. Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E746-9 - PubMed
  6. Nat Immunol. 2004 Jan;5(1):45-54 - PubMed
  7. Nutrition. 2010 Nov-Dec;26(11-12):1176-80 - PubMed
  8. Obesity (Silver Spring). 2006 Dec;14(12):2145-53 - PubMed
  9. Am J Pathol. 2004 Jun;164(6):2189-202 - PubMed
  10. J Endocrinol. 2009 Mar;200(3):331-46 - PubMed
  11. Am J Physiol. 1986 Nov;251(5 Pt 1):E576-83 - PubMed
  12. J Biol Chem. 2007 Oct 19;282(42):30794-803 - PubMed
  13. J Clin Invest. 1967 Nov;46(11):1756-67 - PubMed
  14. Am J Physiol. 1997 Dec;273(6 Pt 1):E1168-77 - PubMed
  15. Science. 2001 Nov 30;294(5548):1866-70 - PubMed
  16. Curr Opin Clin Nutr Metab Care. 2007 Jul;10(4):403-9 - PubMed
  17. Gene Regul Syst Bio. 2012;6:151-68 - PubMed
  18. Metab Syndr Relat Disord. 2008 Jun;6(2):87-102 - PubMed
  19. Nutrition. 1997 Jan;13(1):65; discussion 64, 66 - PubMed
  20. Physiol Rev. 1998 Jul;78(3):783-809 - PubMed
  21. Mol Nutr Food Res. 2015 Jan;59(1):75-93 - PubMed
  22. Annu Rev Nutr. 2010 Aug 21;30:341-64 - PubMed
  23. Genome Biol. 2005;6(13):R108 - PubMed
  24. World J Surg. 2001 Apr;25(4):461-7 - PubMed
  25. Diabetes. 2008 Feb;57(2):432-9 - PubMed
  26. Diabetes Metab Res Rev. 2005 Nov-Dec;21(6):495-504 - PubMed
  27. Diabetologia. 2007 Jul;50(7):1472-80 - PubMed
  28. Mol Cell Endocrinol. 2009 Feb 27;299(2):163-71 - PubMed
  29. J Biol Chem. 2010 Aug 6;285(32):24447-56 - PubMed
  30. FEBS Lett. 2008 Jan 9;582(1):117-31 - PubMed
  31. Mol Cell Endocrinol. 2011 May 16;338(1-2):10-7 - PubMed
  32. Endocrinology. 2003 Nov;144(11):4773-82 - PubMed
  33. Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R493-500 - PubMed
  34. J Biol Chem. 2004 Dec 10;279(50):52361-5 - PubMed
  35. J Lipid Res. 2003 Aug;44(8):1499-507 - PubMed
  36. Am J Clin Nutr. 2005 Jun;81(6):1275-85 - PubMed
  37. J Clin Invest. 2006 Jul;116(7):1793-801 - PubMed
  38. Rheumatology (Oxford). 2010 Jun;49(6):1056-62 - PubMed
  39. Physiol Genomics. 2010 Jun;42(1):55-66 - PubMed
  40. Front Immunol. 2014 Sep 26;5:470 - PubMed
  41. Eur J Cell Biol. 2013 Jun-Jul;92(6-7):229-36 - PubMed
  42. Endocrinology. 2008 Apr;149(4):1581-90 - PubMed
  43. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15552-7 - PubMed
  44. Proc Nutr Soc. 2005 Feb;64(1):39-46 - PubMed
  45. Physiol Genomics. 2010 Oct;42A(2):141-52 - PubMed
  46. Mol Endocrinol. 2006 Apr;20(4):786-94 - PubMed
  47. Diabetes. 2007 Sep;56(9):2356-70 - PubMed
  48. J Biol Chem. 2013 Feb 1;288(5):3036-47 - PubMed
  49. J Pharmacol Exp Ther. 2011 Dec;339(3):896-904 - PubMed
  50. J Nutr. 2004 May;134(5):1032-8 - PubMed
  51. Diabetes Metab Syndr Obes. 2014 Aug 01;7:381-9 - PubMed
  52. J Lipid Res. 2004 Sep;45(9):1640-8 - PubMed
  53. Endocrinology. 2001 Mar;142(3):1269-77 - PubMed
  54. Diabetes. 2007 Dec;56(12):2982-9 - PubMed
  55. Diabetes Care. 1987 Jan-Feb;10(1):126-32 - PubMed
  56. Trends Endocrinol Metab. 2009 Jan;20(1):16-24 - PubMed
  57. Adv Exp Med Biol. 1988;246:29-31 - PubMed
  58. Biochim Biophys Acta. 2007 Aug;1771(8):1046-64 - PubMed
  59. PLoS One. 2011 Feb 25;6(2):e17386 - PubMed
  60. J Clin Invest. 1997 Feb 1;99(3):385-90 - PubMed

Publication Types

Grant support