Display options
Share it on

Sci Rep. 2015 Sep 24;5:14358. doi: 10.1038/srep14358.

Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.

Scientific reports

Soohaeng Yoo Willow, Michael A Salim, Kwang S Kim, So Hirata

Affiliations

  1. Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
  2. Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.
  3. CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

PMID: 26400690 PMCID: PMC4585828 DOI: 10.1038/srep14358

Abstract

A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation.

References

  1. J Chem Phys. 2011 Mar 28;134(12):121105 - PubMed
  2. J Chem Phys. 2008 Feb 21;128(7):074506 - PubMed
  3. J Chem Theory Comput. 2014 Dec 9;10(12):5297-307 - PubMed
  4. Phys Rev A Gen Phys. 1986 Apr;33(4):2679-2693 - PubMed
  5. J Chem Phys. 2013 Feb 21;138(7):074506 - PubMed
  6. J Chem Phys. 2004 Sep 15;121(11):5400-9 - PubMed
  7. Chem Rev. 2012 Jan 11;112(1):632-72 - PubMed
  8. J Phys Chem B. 2012 Sep 13;116(36):11247-54 - PubMed
  9. J Phys Chem Lett. 2014 Sep 4;5(17):3066-7 - PubMed
  10. J Phys Chem A. 2006 Aug 3;110(30):9469-77 - PubMed
  11. J Phys Chem B. 2011 May 12;115(18):5545-53 - PubMed
  12. Phys Rev Lett. 2011 Jan 21;106(3):037801 - PubMed
  13. J Chem Phys. 2008 Jun 14;128(22):224511 - PubMed
  14. J Chem Theory Comput. 2012 Dec 11;8(12):5008-12 - PubMed
  15. J Chem Phys. 2004 Sep 1;121(9):3973-83 - PubMed
  16. J Chem Phys. 2004 Jan 8;120(2):823-8 - PubMed
  17. Phys Rev Lett. 2008 Jul 4;101(1):017801 - PubMed
  18. J Chem Phys. 2005 May 8;122(18):184509 - PubMed
  19. J Chem Phys. 2009 Jun 14;130(22):221102 - PubMed
  20. J Chem Phys. 2011 Sep 28;135(12):124712 - PubMed
  21. Science. 1999 May 7;284(5416):945-8 - PubMed
  22. Acc Chem Res. 2014 Sep 16;47(9):2721-30 - PubMed
  23. J Phys Chem B. 2013 Aug 29;117(34):9956-72 - PubMed
  24. Science. 2007 Mar 2;315(5816):1249-52 - PubMed
  25. Science. 1997 Feb 7;275(5301):814-7 - PubMed
  26. J Phys Chem A. 2005 Oct 27;109(42):9424-36 - PubMed
  27. J Phys Chem B. 2009 Apr 30;113(17):5702-19 - PubMed
  28. J Chem Phys. 2005 Jun 15;122(23):234511 - PubMed

Publication Types