Display options
Share it on

Biores Open Access. 2015 Feb 01;4(1):146-59. doi: 10.1089/biores.2014.0058. eCollection 2015.

Effect of BDNF and Other Potential Survival Factors in Models of In Vitro Oxidative Stress on Adult Spinal Cord-Derived Neural Stem/Progenitor Cells.

BioResearch open access

Laureen D Hachem, Andrea J Mothe, Charles H Tator

Affiliations

  1. Division of Genetics and Development, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Ontario, Canada .
  2. Division of Genetics and Development, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Ontario, Canada . ; Department of Surgery, Division of Neurosurgery, University of Toronto , Ontario, Canada .

PMID: 26309791 PMCID: PMC4497651 DOI: 10.1089/biores.2014.0058

Abstract

Transplantation of neural stem/progenitor cells (NSPCs) is a promising strategy in spinal cord injury (SCI). However, poor survival of transplanted stem cells remains a major limitation of this therapy due to the hostile environment of the injured cord. Oxidative stress is a hallmark in the pathogenesis of SCI; however, its effects on NSPCs from the adult spinal cord have yet to be examined. We therefore developed in vitro models of mild and severe oxidative stress of adult spinal cord-derived NSPCs and used these models to examine potential cell survival factors. NSPCs harvested from the adult rat spinal cord were treated with hydrogen peroxide (H2O2) in vitro to induce oxidative stress. A mild 4 h exposure to H2O2 (500 μM) significantly increased the level of intracellular reactive oxygen species with minimal effect on viability. In contrast, 24 h of oxidative stress led to a marked reduction in cell survival. Pretreatment with brain-derived neurotrophic factor (BDNF) for 48 h attenuated the increase in intracellular reactive oxygen species and enhanced survival. This survival effect was associated with a significant reduction in the number of apoptotic cells and a significant increase in the activity of the antioxidant enzymes glutathione reductase and superoxide dismutase. BDNF treatment had no effect on NSPC differentiation or proliferation. In contrast, cyclosporin A and thyrotropin-releasing hormone had minimal or no effect on NSPC survival. Thus, these models of in vitro oxidative stress may be useful for screening neuroprotective factors administered prior to transplantation to enhance survival of stem cell transplants.

Keywords: antioxidants; cell culture; growth factor; neural stem cells; oxidative stress

References

  1. Spinal Cord. 2005 Apr;43(4):204-13 - PubMed
  2. Biomaterials. 2013 May;34(15):3775-83 - PubMed
  3. Free Radic Res. 1999 Oct;31(4):273-300 - PubMed
  4. J Biol Chem. 2012 Aug 24;287(35):29690-701 - PubMed
  5. Curr Opin Biotechnol. 2009 Oct;20(5):552-62 - PubMed
  6. Microvasc Res. 2012 May;83(3):366-71 - PubMed
  7. J Neurosci Res. 2008 Aug 1;86(10):2168-78 - PubMed
  8. Neurotoxicology. 2013 Mar;35:50-61 - PubMed
  9. J Neurochem. 2013 May;125(3):420-9 - PubMed
  10. J Neurotrauma. 1995 Jun;12(3):235-43 - PubMed
  11. J Neurosci. 1998 Mar 15;18(6):2118-28 - PubMed
  12. J Neurosci. 2007 May 9;27(19):5146-55 - PubMed
  13. J Cell Physiol. 2010 Sep;224(3):710-21 - PubMed
  14. Stem Cells. 2006 Sep;24(9):2110-9 - PubMed
  15. Cell Stem Cell. 2011 Jan 7;8(1):59-71 - PubMed
  16. PLoS One. 2011;6(6):e20717 - PubMed
  17. J Neurosci. 2006 Mar 29;26(13):3377-89 - PubMed
  18. J Neuropathol Exp Neurol. 2002 Feb;61(2):142-53 - PubMed
  19. J Neurosci. 2010 Feb 24;30(8):2888-96 - PubMed
  20. Alcohol Clin Exp Res. 2013 Aug;37(8):1370-9 - PubMed
  21. Growth Factors. 2004 Sep;22(3):123-31 - PubMed
  22. Neurosci Lett. 2005 Oct 21;387(2):100-4 - PubMed
  23. J Neurosci. 1990 Jan;10(1):283-92 - PubMed
  24. J Neurosci. 1996 Dec 1;16(23):7599-609 - PubMed
  25. J Neurosurg. 1991 Jul;75(1):15-26 - PubMed
  26. Stem Cell Rev. 2011 Sep;7(3):506-17 - PubMed
  27. PLoS One. 2012;7(7):e40471 - PubMed
  28. Neurotherapeutics. 2011 Apr;8(2):152-67 - PubMed
  29. Apoptosis. 2007 May;12(5):913-22 - PubMed
  30. J Neurotrauma. 2007 Apr;24(4):613-24 - PubMed
  31. Int J Dev Neurosci. 2013 Nov;31(7):701-13 - PubMed
  32. Ann Emerg Med. 1993 Jun;22(6):987-92 - PubMed
  33. J Neurosci Res. 2003 Jan 15;71(2):272-8 - PubMed
  34. J Neurochem. 1995 Oct;65(4):1740-51 - PubMed
  35. Molecules. 2011 Dec 06;16(12):10146-56 - PubMed
  36. Neuroscience. 2008 Aug 26;155(3):760-70 - PubMed
  37. Cell Transplant. 2008;17(7):735-51 - PubMed
  38. PLoS One. 2009;4(5):e5586 - PubMed
  39. Curr Neurovasc Res. 2009 Feb;6(1):42-53 - PubMed
  40. FEBS Lett. 2004 Jul 16;570(1-3):102-6 - PubMed
  41. J Neurotrauma. 2004 Jun;21(6):805-16 - PubMed
  42. Stem Cells Dev. 2014 Oct 1;23(19):2311-27 - PubMed
  43. Stem Cells Dev. 2010 Sep;19(9):1321-31 - PubMed
  44. Neural Regen Res. 2013 Feb 25;8(6):485-95 - PubMed
  45. Cell Transplant. 2015 ;24(12 ):2449-61 - PubMed
  46. Neurochem Res. 2009 May;34(5):942-51 - PubMed
  47. Stem Cells Dev. 2012 Aug 10;21(12):2222-38 - PubMed
  48. J Clin Neurosci. 2011 Feb;18(2):265-70 - PubMed
  49. J Neurosci. 2012 Mar 7;32(10):3462-73 - PubMed
  50. Cell Transplant. 2012;21(6):1177-97 - PubMed
  51. Antioxid Redox Signal. 2007 Jan;9(1):49-89 - PubMed
  52. Int J Dev Neurosci. 2014 Nov;38:74-8 - PubMed
  53. J Clin Invest. 2012 Nov;122(11):3824-34 - PubMed
  54. Jpn J Pharmacol. 1990 Aug;53(4):479-86 - PubMed
  55. FASEB J. 2005 Nov;19(13):1839-41 - PubMed
  56. J Neurochem. 1992 Jul;59(1):99-106 - PubMed
  57. Neuroscience. 2005;131(1):55-65 - PubMed
  58. Nat Rev Drug Discov. 2011 Mar;10(3):209-19 - PubMed
  59. Exp Neurol. 2008 Jan;209(1):243-53 - PubMed
  60. J Cell Biochem. 2013 Oct;114(10):2346-55 - PubMed

Publication Types