Display options
Share it on

Nat Commun. 2015 Sep 16;6:8231. doi: 10.1038/ncomms9231.

Stripe-like nanoscale structural phase separation in superconducting BaPb(1-x)Bi(x)O3.

Nature communications

P Giraldo-Gallo, Y Zhang, C Parra, H C Manoharan, M R Beasley, T H Geballe, M J Kramer, I R Fisher

Affiliations

  1. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
  2. Department of Physics, Stanford University, Stanford, California 94305, USA.
  3. Ames Laboratory (USDOE), Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011-3020, USA.
  4. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  5. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  6. Departmento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile.
  7. Department of Applied Physics, Stanford University, Stanford, California 94305, USA.

PMID: 26373890 PMCID: PMC4595596 DOI: 10.1038/ncomms9231

Abstract

The phase diagram of BaPb(1-x)Bi(x)O3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high-resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare with the Ginzburg-Landau coherence length. We find that the maximum Tc occurs when the superconducting coherence length matches the width of the partially disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.

References

  1. Sci Rep. 2013;3:2383 - PubMed
  2. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9705-9 - PubMed
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061113 - PubMed
  4. Phys Rev B Condens Matter. 1996 Aug 1;54(6):4310-4314 - PubMed
  5. Phys Rev Lett. 2005 Sep 2;95(10):107002 - PubMed
  6. Phys Rev B Condens Matter. 1992 Jul 1;46(2):1144-1156 - PubMed
  7. Phys Rev Lett. 1988 Dec 5;61(23):2713-2716 - PubMed
  8. Phys Rev B Condens Matter. 1991 Oct 1;44(13):6961-6972 - PubMed
  9. Phys Rev Lett. 2014 Oct 24;113(17):177004 - PubMed
  10. Nature. 2002 Jan 24;415(6870):412-6 - PubMed
  11. Phys Rev Lett. 2005 Dec 2;95(23):237206 - PubMed
  12. Phys Rev Lett. 1996 Apr 29;76(18):3412-3415 - PubMed
  13. Nature. 2010 Aug 12;466(7308):841-4 - PubMed
  14. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15685-90 - PubMed

Publication Types