Display options
Share it on

Cell Biosci. 2015 Aug 27;5:50. doi: 10.1186/s13578-015-0042-x. eCollection 2015.

A physical association between the human mutY homolog (hMYH) and DNA topoisomerase II-binding protein 1 (hTopBP1) regulates Chk1-induced cell cycle arrest in HEK293 cells.

Cell & bioscience

Se Hee Han, Soo-Hyun Hahm, An Hue Vy Tran, Ji Hyung Chung, Myoung-Ki Hong, Hyun-Dong Paik, Key-Sun Kim, Ye Sun Han

Affiliations

  1. Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea.
  2. Department of Applied Bioscience, College of Life Science, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do 463-836 Republic of Korea.
  3. Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea.
  4. Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea.
  5. Center for Neuroscience, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea.
  6. Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea ; College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea.

PMID: 26312135 PMCID: PMC4550056 DOI: 10.1186/s13578-015-0042-x

Abstract

BACKGROUND: Human DNA topoisomerase II-binding protein 1 (hTopBP1) plays an important role in DNA replication and the DNA damage checkpoint pathway. The human mutY homolog (hMYH) is a base excision repair DNA glycosylase that excises adenines or 2-hydroxyadenines that are mispaired with guanine or 7,8-dihydro-8-oxoguanine (8-oxoG). hTopBP1 and hMYH were involved in ATR-mediated Chk1 activation, moreover, both of them were associated with ATR and hRad9 which known as checkpoint-involved proteins. Therefore, we investigated whether hTopBP1 interacted with hMYH, and what the function of their interaction is.

RESULTS: We documented the interaction between hTopBP1 and hMYH and showed that this interaction increased in a hydroxyurea-dependent manner. We also mapped the hMYH-interacting region of hTopBP1 (residues 444-991). In addition, we investigated several cell cycle-related proteins and found that co-knockdown of hTopBP1 and hMYH significantly diminished cell cycle arrest due to compromised checkpoint kinase 1 (Chk1) activation. Moreover, we observed that hMYH was essential for the accumulation of hTopBP1 on damaged DNA, where hTopBP1 interacts with hRad9, a component of the Rad9-Hus1-Rad1 complex. The accumulation of hTopBP1 on chromatin and its subsequent interaction with hRad9 lead to cell cycle arrest, a process mediated by Chk1 phosphorylation and ataxia telangiectasia and Rad3-related protein (ATR) activation.

CONCLUSIONS: Our results suggested that hMYH is necessary for the accumulation of hTopBP1 to DNA damage lesion to induce the association of hTopBP1 with 9-1-1 and that the interaction between hMYH and hTopBP1 is essential for Chk1 activation. Therefore, we suggest that the interaction between hMYH and hTopBP1 is crucial for activation of the ATR-mediated cell cycle checkpoint.

Keywords: ATR signaling; Cell cycle arrest; Human Rad9; Human mutY homolog (hMYH); Human topoisomerase II-binding protein 1 (hTopBP1); Phospho-Chk1

References

  1. Genes Dev. 2008 Jun 1;22(11):1478-89 - PubMed
  2. Mol Cell Biol. 2013 Dec;33(23):4685-700 - PubMed
  3. Cell. 2006 Mar 10;124(5):943-55 - PubMed
  4. Cell Div. 2009 Apr 29;4:8 - PubMed
  5. Mol Biol Cell. 2010 Mar 15;21(6):926-35 - PubMed
  6. Cancer Res. 1987 Dec 15;47(24 Pt 1):6490-3 - PubMed
  7. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13561-2 - PubMed
  8. Cell Cycle. 2005 Apr;4(4):529-32 - PubMed
  9. Hered Cancer Clin Pract. 2007 Dec 15;5(4):199-209 - PubMed
  10. Biochem J. 2006 Nov 15;400(1):53-62 - PubMed
  11. Cell Cycle. 2009 Sep 15;8(18):2877-84 - PubMed
  12. J Biol Chem. 2002 Apr 5;277(14):11853-8 - PubMed
  13. J Biol Chem. 2001 Aug 10;276(32):30399-406 - PubMed
  14. Mol Cell Biol. 2009 May;29(10):2673-93 - PubMed
  15. Biochem Biophys Res Commun. 2013 Feb 15;431(3):466-71 - PubMed
  16. J Cell Biol. 2011 Apr 18;193(2):267-73 - PubMed
  17. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1036-41 - PubMed
  18. Biochem Biophys Res Commun. 2007 Nov 3;362(4):872-9 - PubMed
  19. Mol Cell Biol. 2006 Aug;26(16):6056-64 - PubMed
  20. J Biol Chem. 2003 Nov 21;278(47):46782-8 - PubMed
  21. DNA Repair (Amst). 2005 Nov 21;4(11):1227-39 - PubMed
  22. Mol Cell. 2009 Dec 11;36(5):845-60 - PubMed
  23. Biochemistry. 1999 May 18;38(20):6374-9 - PubMed
  24. J Biol Chem. 2001 Feb 23;276(8):5547-55 - PubMed
  25. J Cell Biol. 2006 Apr 24;173(2):181-6 - PubMed
  26. Oncol Lett. 2012 Dec;4(6):1203-1208 - PubMed
  27. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18201-6 - PubMed
  28. J Mol Biol. 2010 Oct 29;403(3):351-70 - PubMed
  29. BMB Rep. 2011 May;44(5):352-7 - PubMed
  30. Genes Dev. 2007 Jun 15;21(12 ):1472-7 - PubMed
  31. J Cell Biol. 2009 Mar 23;184(6):793-804 - PubMed
  32. Mol Pharmacol. 2009 Jul;76(1):208-14 - PubMed
  33. Hum Mol Genet. 2011 Sep 1;20(17):3401-14 - PubMed
  34. BMC Mol Biol. 2014 Aug 15;15:17 - PubMed
  35. J Cell Sci. 2002 Jul 15;115(Pt 14):2829-38 - PubMed
  36. J Biol Chem. 2011 Jun 3;286(22):19229-36 - PubMed

Publication Types