Display options
Share it on

Nat Nanotechnol. 2015 Nov;10(11):958-64. doi: 10.1038/nnano.2015.193. Epub 2015 Sep 07.

Tuning emergent magnetism in a Hund's impurity.

Nature nanotechnology

A A Khajetoorians, M Valentyuk, M Steinbrecher, T Schlenk, A Shick, J Kolorenc, A I Lichtenstein, T O Wehling, R Wiesendanger, J Wiebe

Affiliations

  1. Department of Physics, Hamburg University, Hamburg D-20355, Germany.
  2. Institute for Molecules and Materials (IMM), Radboud University, Nijmegen 6525 AJ, The Netherlands.
  3. Institute of Theoretical Physics, Hamburg University, Hamburg D-20355, Germany.
  4. Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Ekaterinburg 620002, Russia.
  5. Institute of Physics, ASCR, Na Slovance 2, Prague CZ-18221, Czech Republic.
  6. Institute for Theoretical Physics, Bremen Center for Computational Material Science, University of Bremen, Bremen D-28359, Germany.

PMID: 26344182 DOI: 10.1038/nnano.2015.193

Abstract

The recently proposed concept of a Hund's metal--a metal in which electron correlations are driven by Hund's rule coupling-can be used to explain the exotic magnetic and electronic behaviour of strongly correlated electron systems of multi-orbital metallic materials. Tuning the abundance of parameters that determine these materials is, however, experimentally challenging. Here, we show that the basic constituent of a Hund's metal--a Hund's impurity--can be realized using a single iron atom adsorbed on a platinum surface, a system that comprises a magnetic moment in the presence of strong charge fluctuations. The magnetic properties can be controlled by using the tip of a scanning tunnelling microscope to change the binding site and degree of hydrogenation of the 3d transition-metal atom. We are able to experimentally explore a regime of four almost degenerate energy scales (Zeeman energy, temperature, Kondo temperature and magnetic anisotropy) and probe the magnetic excitations with the microscope tip. The regime of our Hund's impurity can be tuned from an emergent magnetic moment to a multi-orbital Kondo state, and the system could be used to test predictions of advanced many-body theories for non-Fermi liquids in quantum magnets or unconventional superconductors.

References

  1. Science. 2011 Apr 8;332(6026):200-4 - PubMed
  2. Science. 2007 Aug 31;317(5842):1199-203 - PubMed
  3. Phys Rev Lett. 2011 Dec 16;107(25):256401 - PubMed
  4. Science. 2004 Oct 15;306(5695):466-9 - PubMed
  5. Science. 1987 Mar 6;235(4793):1196-8 - PubMed
  6. Nat Mater. 2011 Sep 18;10(12):932-5 - PubMed
  7. Science. 2010 Jun 11;328(5984):1370-3 - PubMed
  8. Nat Nanotechnol. 2014 Jan;9(1):64-8 - PubMed
  9. Nat Commun. 2013;4:2110 - PubMed
  10. Phys Rev Lett. 2011 Mar 4;106(9):096401 - PubMed
  11. Phys Rev Lett. 2013 May 3;110(18):186404 - PubMed
  12. J Phys Condens Matter. 2011 Mar 2;23(8):085601 - PubMed
  13. Phys Rev Lett. 2010 Mar 19;104(11):117601 - PubMed
  14. Science. 1998 Apr 24;280(5363):567-9 - PubMed
  15. Phys Rev Lett. 2000 Aug 14;85(7):1504-7 - PubMed
  16. Phys Rev Lett. 2002 Feb 18;88(7):077205 - PubMed
  17. Nat Commun. 2011 Oct 04;2:490 - PubMed
  18. Phys Rev Lett. 2015 Mar 13;114(10):106807 - PubMed
  19. Phys Rev Lett. 2013 Oct 11;111(15):157204 - PubMed
  20. Phys Rev Lett. 2008 Oct 17;101(16):166405 - PubMed
  21. Science. 2005 Sep 2;309(5740):1542-4 - PubMed
  22. Phys Rev Lett. 2011 May 6;106(18):187201 - PubMed
  23. Phys Rev Lett. 2007 Dec 21;99(25):256601 - PubMed
  24. Sci Rep. 2013;3:1210 - PubMed
  25. Phys Rev Lett. 2009 Oct 2;103(14):147205 - PubMed

Publication Types