Display options
Share it on

Vaccines (Basel). 2014 Oct 16;2(4):735-54. doi: 10.3390/vaccines2040735.

Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles.

Vaccines

Kenneth C McCullough, Panagiota Milona, Lisa Thomann-Harwood, Thomas Démoulins, Pavlos Englezou, Rolf Suter, Nicolas Ruggli

Affiliations

  1. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].
  2. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].
  3. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].
  4. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].
  5. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].
  6. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].
  7. Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland. [email protected].

PMID: 26344889 PMCID: PMC4494254 DOI: 10.3390/vaccines2040735

Abstract

Dendritic cells (DC) play essential roles determining efficacy of vaccine delivery with respect to immune defence development and regulation. This renders DCs important targets for vaccine delivery, particularly RNA vaccines. While delivery of interfering RNA oligonucleotides to the appropriate intracellular sites for RNA-interference has proven successful, the methodologies are identical for RNA vaccines, which require delivery to RNA translation sites. Delivery of mRNA has benefitted from application of cationic entities; these offer value following endocytosis of RNA, when cationic or amphipathic properties can promote endocytic vesicle membrane perturbation to facilitate cytosolic translocation. The present review presents how such advances are being applied to the delivery of a new form of RNA vaccine, replicons (RepRNA) carrying inserted foreign genes of interest encoding vaccine antigens. Approaches have been developed for delivery to DCs, leading to the translation of the RepRNA and encoded vaccine antigens both in vitro and in vivo. Potential mechanisms favouring efficient delivery leading to translation are discussed with respect to the DC endocytic machinery, showing the importance of cytosolic translocation from acidifying endocytic structures. The review relates the DC endocytic pathways to immune response induction, and the potential advantages for these self-replicating RNA vaccines in the near future.

Keywords: nanoparticle delivery; self-replicating replicon RNA; targeting dendritic cells

References

  1. Nanomedicine (Lond). 2013 Jan;8(1):77-87 - PubMed
  2. Ther Deliv. 2012 Sep;3(9):1077-99 - PubMed
  3. Immunol Rev. 2004 Jun;199:9-26 - PubMed
  4. Expert Opin Drug Deliv. 2011 Apr;8(4):505-19 - PubMed
  5. J Control Release. 2010 Dec 20;148(3):334-43 - PubMed
  6. Curr Opin Immunol. 2007 Feb;19(1):66-72 - PubMed
  7. Cancer Gene Ther. 2007 Sep;14(9):802-14 - PubMed
  8. Ann N Y Acad Sci. 2008 Nov;1143:1-20 - PubMed
  9. Cell Res. 2010 Mar;20(3):256-75 - PubMed
  10. Biomacromolecules. 2012 Mar 12;13(3):636-44 - PubMed
  11. J Virol. 2009 Jan;83(2):817-29 - PubMed
  12. Nat Cell Biol. 2001 May;3(5):473-83 - PubMed
  13. Biomacromolecules. 2001 Winter;2(4):1161-8 - PubMed
  14. Methods Mol Biol. 2013;969:247-74 - PubMed
  15. Nat Rev Genet. 2011 May;12(5):329-40 - PubMed
  16. Science. 2010 Feb 5;327(5966):656-61 - PubMed
  17. Dev Comp Immunol. 2009 Mar;33(3):394-409 - PubMed
  18. Microbiol Rev. 1994 Sep;58(3):491-562 - PubMed
  19. Virology. 2005 Jan 20;331(2):457-70 - PubMed
  20. Nanomedicine. 2010 Aug;6(4):523-9 - PubMed
  21. Mol Ther. 2014 Dec;22(12):2118-29 - PubMed
  22. Vaccine. 2012 Dec 14;30(52):7652-7 - PubMed
  23. Curr Opin Immunol. 2001 Feb;13(1):45-51 - PubMed
  24. Viruses. 2009 Dec;1(3):1022-34 - PubMed
  25. Gene Ther. 2010 Aug;17(8):961-71 - PubMed
  26. Curr Opin Cell Biol. 2011 Aug;23(4):393-403 - PubMed
  27. J Biol Chem. 2007 May 25;282(21):15319-23 - PubMed
  28. Nat Biotechnol. 2013 Jul;31(7):638-46 - PubMed
  29. Curr Opin Immunol. 2010 Feb;22(1):109-17 - PubMed
  30. Methods Mol Biol. 2010;629:53-67 - PubMed
  31. Virology. 2005 Sep 30;340(2):265-76 - PubMed
  32. Curr Opin Mol Ther. 2002 Feb;4(1):28-34 - PubMed
  33. ACS Nano. 2013 May 28;7(5):3767-77 - PubMed
  34. Virology. 2013 Dec;447(1-2):254-64 - PubMed
  35. J Control Release. 2010 Nov 1;147(3):385-91 - PubMed
  36. Expert Opin Biol Ther. 2004 Aug;4(8):1285-94 - PubMed
  37. Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):943-55 - PubMed
  38. J Gene Med. 2005 Apr;7(4):452-65 - PubMed
  39. Nat Rev Mol Cell Biol. 2009 Sep;10(9):609-22 - PubMed
  40. Virus Res. 2012 Aug;167(2):125-37 - PubMed
  41. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1951-6 - PubMed
  42. Virus Res. 1986 Jul;5(1):61-6 - PubMed
  43. Nat Biotechnol. 1997 Jul;15(7):618-9 - PubMed
  44. J Immunol. 1998 Aug 1;161(3):1313-9 - PubMed
  45. J Leukoc Biol. 2011 Oct;90(4):691-701 - PubMed
  46. J Control Release. 2011 May 10;151(3):220-8 - PubMed
  47. Int Immunopharmacol. 2007 Apr;7(4):417-26 - PubMed
  48. Immunol Today. 1989 Sep;10(9):283-6 - PubMed
  49. Nat Immunol. 2005 Jan;6(1):107-13 - PubMed
  50. Biomed Mater. 2008 Jun;3(2):025013 - PubMed
  51. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17463-8 - PubMed
  52. Expert Opin Drug Deliv. 2011 Jul;8(7):857-71 - PubMed
  53. Curr Opin Immunol. 2008 Feb;20(1):89-95 - PubMed
  54. Hum Vaccin. 2006 Mar-Apr;2(2):45-53 - PubMed
  55. Biopolymers. 2010;94(6):763-70 - PubMed
  56. Eur J Biochem. 1992 Sep 15;208(3):581-7 - PubMed
  57. Rev Med Virol. 2002 Sep-Oct;12(5):279-96 - PubMed
  58. Curr Opin Cell Biol. 2008 Aug;20(4):437-44 - PubMed
  59. Curr Opin Mol Ther. 2000 Oct;2(5):555-69 - PubMed
  60. Expert Rev Mol Med. 2008 Nov 11;10:e33 - PubMed
  61. Virology. 2005 Dec 5;343(1):93-105 - PubMed
  62. J Control Release. 2010 May 10;143(3):311-7 - PubMed
  63. Vaccine. 2011 Feb 4;29(7):1491-503 - PubMed
  64. Nat Biotechnol. 2012 Dec;30(12):1210-6 - PubMed
  65. J Virol. 1997 Jan;71(1):451-7 - PubMed
  66. J Virol. 2007 Apr;81(7):3087-96 - PubMed
  67. Curr Opin Cell Biol. 2011 Aug;23(4):413-20 - PubMed
  68. J Control Release. 2006 Nov 28;116(2):255-64 - PubMed
  69. Cell Mol Life Sci. 2010 Mar;67(5):715-26 - PubMed
  70. Mol Pharm. 2013 Sep 3;10 (9):3366-74 - PubMed
  71. J Control Release. 2012 Jun 10;160(2):200-10 - PubMed
  72. J Control Release. 2013 Mar 10;166(2):95-105 - PubMed
  73. Nat Immunol. 2007 Oct;8(10):1041-8 - PubMed
  74. Nanomedicine. 2011 Aug;7(4):445-53 - PubMed
  75. Pharmacol Ther. 2000 Aug-Sep;87(2-3):255-77 - PubMed
  76. J Control Release. 2006 Oct 10;115(2):216-25 - PubMed
  77. EMBO J. 2008 Jan 9;27(1):1-5 - PubMed
  78. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14604-9 - PubMed
  79. PLoS One. 2012;7(8):e43248 - PubMed
  80. Nanomedicine (Lond). 2010 Sep;5(7):1089-102 - PubMed
  81. J Interferon Cytokine Res. 2011 Jan;31(1):13-25 - PubMed
  82. Expert Opin Biol Ther. 2006 Feb;6(2):135-45 - PubMed
  83. Mol Ther Nucleic Acids. 2014 Jul 08;3:e173 - PubMed
  84. Immunity. 2004 Jan;20(1):47-58 - PubMed
  85. Immunology. 1999 Oct;98(2):203-12 - PubMed
  86. Blood. 2012 Jan 5;119(1):95-105 - PubMed
  87. J Drug Target. 2011 Jun;19(5):315-25 - PubMed
  88. Adv Drug Deliv Rev. 2009 Jul 25;61(9):710-20 - PubMed
  89. Mol Pharm. 2012 Oct 1;9(10):2942-9 - PubMed
  90. RNA. 2000 Dec;6(12):1791-807 - PubMed
  91. J Control Release. 2012 Jul 20;161(2):600-8 - PubMed
  92. Nat Rev Immunol. 2008 Aug;8(8):607-18 - PubMed
  93. Gene Ther. 2001 Aug;8(15):1188-96 - PubMed
  94. Br J Pharmacol. 2009 May;157(2):166-78 - PubMed
  95. Expert Opin Drug Deliv. 2011 Apr;8(4):521-36 - PubMed
  96. Cell. 2006 Feb 24;124(4):849-63 - PubMed
  97. Nature. 2003 Mar 6;422(6927):37-44 - PubMed
  98. J Control Release. 2011 Mar 30;150(3):238-47 - PubMed
  99. J Control Release. 2011 May 30;152(1):99-109 - PubMed

Publication Types