Display options
Share it on

Worm. 2015 Jun 02;4(3):e1042644. doi: 10.1080/21624054.2015.1042644. eCollection 2015.

Translational activation maintains germline tissue homeostasis during adulthood.

Worm

Marco Nousch, Christian R Eckmann

Affiliations

  1. Division of Genetics; Institute of Biology; Martin Luther University, Halle-Wittenberg ; Halle, Saales, Germany.
  2. Division of Genetics; Institute of Biology; Martin Luther University, Halle-Wittenberg ; Halle, Saales, Germany ; Max Planck Institute of Molecular Cell Biology and Genetics ; Dresden, Germany.

PMID: 26430565 PMCID: PMC4588557 DOI: 10.1080/21624054.2015.1042644

Abstract

Adult tissue maintenance is achieved through a tightly controlled equilibrium of 2 opposing cell fates: stem cell proliferation and differentiation. In recent years, the germ line emerged as a powerful in vivo model tissue to investigate the underlying gene expression mechanisms regulating this balance. Studies in numerous organisms highlighted the prevalence of post-transcriptional mRNA regulation, which relies on RNA-targeting factors that influence mRNA fates (e.g. decay or translational efficiency). Conserved translational repressors were identified that build negative feedback loops to ensure one or the other cell fate. However, to facilitate a fast and efficient transition between 2 opposing cell fates, translational repression per se appears not to be sufficient, suggesting the involvement of additional modes of gene expression regulation. Cytoplasmic poly(A) polymerases (cytoPAPs) represent a unique class of post-transcriptional mRNA regulators that modify mRNA 3' ends and positively influence cytoplasmic mRNA fates. We recently discovered that the 2 main cytoPAPs, GLD-2 and GLD-4, use distinct mechanisms to promote gene expression and that cytoPAP-mediated mRNA activation is important for regulating the size of the proliferative germ cell pool in the adult Caenorhabditis elegans gonad. Here, we comment on the different mechanisms of the 2 cytoPAPs as translational activators in germ cell development and focus on their biological roles in maintaining the balance between germline stem cell proliferation and differentiation in the Caenorhabditis elegans gonad.

Keywords: C. elegans; RNA regulation; germ cells; poly(A) polymerases; transit-amplifying cells

References

  1. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4407-12 - PubMed
  2. Development. 2008 Jun;135(11):1969-79 - PubMed
  3. Nature. 2002 Sep 19;419(6904):312-6 - PubMed
  4. Wiley Interdiscip Rev RNA. 2013 Jul-Aug;4(4):437-61 - PubMed
  5. Development. 2003 Jun;130(12):2623-32 - PubMed
  6. Development. 2011 Jun;138(11):2223-34 - PubMed
  7. Cell. 2005 Jun 3;121(5):713-24 - PubMed
  8. PLoS Genet. 2014 Sep 25;10(9):e1004647 - PubMed
  9. Nucleic Acids Res. 2014 Oct;42(18):11622-33 - PubMed
  10. Adv Exp Med Biol. 2013;786:29-46 - PubMed
  11. PLoS Biol. 2005 Jun;3(6):e189 - PubMed
  12. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2048-53 - PubMed
  13. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17445-50 - PubMed
  14. Philos Trans R Soc Lond B Biol Sci. 2003 Aug 29;358(1436):1359-62 - PubMed
  15. Stem Cell Reports. 2013 Nov 07;1(5):411-24 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3936-41 - PubMed
  17. Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15108-12 - PubMed
  18. RNA Biol. 2014;11(2):111-23 - PubMed
  19. EMBO Rep. 2006 Feb;7(2):205-11 - PubMed
  20. Nature. 2014 May 1;509(7498):49-54 - PubMed
  21. Nature. 2014 Apr 3;508(7494):66-71 - PubMed
  22. Dev Biol. 1996 Nov 25;180(1):165-83 - PubMed
  23. Genes Dev. 2007 Dec 1;21(23):3135-48 - PubMed
  24. Genes Dev. 2010 Sep 15;24(18):2081-92 - PubMed
  25. Curr Opin Cell Biol. 2012 Jun;24(3):314-22 - PubMed
  26. Development. 1994 Oct;120(10):2913-24 - PubMed
  27. Mol Cell. 2011 Dec 9;44(5):828-40 - PubMed
  28. Development. 1994 Oct;120(10):2901-11 - PubMed
  29. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10 ):3739-44 - PubMed
  30. Adv Exp Med Biol. 2013;757:71-99 - PubMed
  31. Development. 1997 Feb;124(4):925-36 - PubMed
  32. RNA. 2012 Jun;18(6):1289-95 - PubMed
  33. Cell Stem Cell. 2012 Nov 2;11(5):689-700 - PubMed
  34. Nat Rev Mol Cell Biol. 2008 Apr;9(4):337-44 - PubMed
  35. Genetics. 2009 Apr;181(4):1249-60 - PubMed
  36. Nat Struct Mol Biol. 2012 Jun 05;19(6):577-85 - PubMed
  37. Genetics. 2004 Sep;168(1):147-60 - PubMed
  38. Wiley Interdiscip Rev RNA. 2013 Mar-Apr;4(2):217-31 - PubMed
  39. Biochim Biophys Acta. 2008 Apr;1779(4):206-16 - PubMed
  40. Nature. 2002 Jun 6;417(6889):660-3 - PubMed
  41. Genes Dev. 2009 Apr 1;23(7):824-36 - PubMed
  42. PLoS One. 2014 Feb 19;9(2):e88372 - PubMed
  43. Adv Exp Med Biol. 2013;757:205-47 - PubMed
  44. Cell. 1987 Nov 20;51(4):589-99 - PubMed
  45. EMBO J. 2011 Feb 2;30(3):533-45 - PubMed
  46. Nat Rev Mol Cell Biol. 2013 Oct;14(10):643-53 - PubMed
  47. J Cell Biol. 2014 Oct 13;207(1):13-21 - PubMed
  48. Genetics. 2014 Dec;198(4):1513-33 - PubMed

Publication Types