Display options
Share it on

Front Microbiol. 2015 Aug 20;6:860. doi: 10.3389/fmicb.2015.00860. eCollection 2015.

Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

Frontiers in microbiology

Guilherme L Pinheiro, Raquel F Correa, Raquel S Cunha, Alexander M Cardoso, Catia Chaia, Maysa M Clementino, Eloi S Garcia, Wanderley de Souza, Susana Frasés

Affiliations

  1. Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil.
  2. Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil.
  3. Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Centro Universitário Estadual da Zona Oeste, Unidade Universitária de Biologia Rio de Janeiro, Brazil.
  4. Departamento de Microbiologia, Instituto Nacional de Controle da Qualidade em Saúde, Fundação Oswaldo Cruz Rio de Janeiro, Brazil.
  5. Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia Rio de Janeiro, Brazil ; Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil.

PMID: 26347735 PMCID: PMC4542579 DOI: 10.3389/fmicb.2015.00860

Abstract

The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.

Keywords: Achatina fulica; carboxymethycellulose; cellulolytic bacteria; microbial diversity

References

  1. Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):303-7 - PubMed
  2. Biomed Res Int. 2014;2014:512497 - PubMed
  3. Braz J Biol. 2008 Nov;68(4):837-42 - PubMed
  4. Appl Biochem Biotechnol. 2011 Jun;164(3):256-67 - PubMed
  5. Int J Syst Evol Microbiol. 2003 May;53(Pt 3):787-93 - PubMed
  6. J Ind Microbiol Biotechnol. 2009 Apr;36(4):585-98 - PubMed
  7. World J Microbiol Biotechnol. 2012 May;28(5):2195-203 - PubMed
  8. Syst Appl Microbiol. 2011 May;34(3):189-99 - PubMed
  9. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  10. Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2349-54 - PubMed
  11. Biol Res. 2006;39(4):669-81 - PubMed
  12. Biochem J. 1997 Jun 1;324 ( Pt 2):403-11 - PubMed
  13. J Bacteriol. 1991 Jan;173(2):697-703 - PubMed
  14. Biotechnol Adv. 2006 Sep-Oct;24(5):452-81 - PubMed
  15. Int J Syst Evol Microbiol. 2010 Oct;60(Pt 10):2341-5 - PubMed
  16. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  17. Biochim Biophys Acta. 2002 Jan 17;1553(1-2):84-101 - PubMed
  18. J Gen Microbiol. 1977 Jan;98 (1):109-15 - PubMed
  19. Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1185-92 - PubMed
  20. Anal Biochem. 1984 May 1;138(2):481-7 - PubMed
  21. Bioresour Technol. 2012 Mar;107:25-32 - PubMed
  22. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  23. J Biotechnol. 2006 Nov 10;126(3):304-12 - PubMed
  24. Appl Environ Microbiol. 1982 Apr;43(4):777-80 - PubMed
  25. Ann Nutr Aliment. 1980;34(1):147-66 - PubMed
  26. Biotechnol Biofuels. 2011 Nov 14;4:51 - PubMed
  27. Int J Biol Sci. 2009 Jul 29;5(5):500-16 - PubMed
  28. Microbiologyopen. 2012 Dec;1(4):415-26 - PubMed
  29. Ann N Y Acad Sci. 2008 Mar;1125:267-79 - PubMed
  30. J Biosci Bioeng. 2009 Jun;107(6):610-4 - PubMed
  31. J Invertebr Pathol. 2008 May;98(1):34-9 - PubMed
  32. J Bacteriol. 1999 Mar;181(5):1643-51 - PubMed
  33. Int J Syst Evol Microbiol. 2005 Sep;55(Pt 5):1897-901 - PubMed
  34. PLoS One. 2012;7(11):e48505 - PubMed
  35. Int J Syst Evol Microbiol. 2008 Jun;58(Pt 6):1308-12 - PubMed
  36. Curr Microbiol. 2008 Jul;57(1):39-44 - PubMed
  37. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3708-17 - PubMed
  38. PLoS One. 2012;7(3):e33440 - PubMed
  39. Appl Microbiol Biotechnol. 2011 Mar;89(5):1453-62 - PubMed

Publication Types