Display options
Share it on

Front Plant Sci. 2015 Aug 17;6:639. doi: 10.3389/fpls.2015.00639. eCollection 2015.

Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions.

Frontiers in plant science

Irene A Vos, Liselotte Moritz, Corné M J Pieterse, Saskia C M Van Wees

Affiliations

  1. Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.

PMID: 26347758 PMCID: PMC4538242 DOI: 10.3389/fpls.2015.00639

Abstract

The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA) are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses.

Keywords: Botrytis cinerea; Hyaloperonospora arabidopsidis; Pieris rapae; fitness; hormonal crosstalk; resistance

References

  1. Curr Opin Plant Biol. 1998 Oct;1(5):404-11 - PubMed
  2. Planta. 1999 Jul;209(1):87-95 - PubMed
  3. Plant Cell. 2001 May;13(5):1025-33 - PubMed
  4. Trends Plant Sci. 2002 Feb;7(2):61-7 - PubMed
  5. Methods. 2001 Dec;25(4):402-8 - PubMed
  6. Plant Physiol. 2002 Jun;129(2):551-64 - PubMed
  7. Curr Opin Plant Biol. 2002 Aug;5(4):345-50 - PubMed
  8. Plant Cell. 2003 Jan;15(1):165-78 - PubMed
  9. Plant Cell. 2004 Jul;16(7):1938-50 - PubMed
  10. Curr Opin Plant Biol. 2004 Oct;7(5):547-52 - PubMed
  11. Plant Cell. 2004 Dec;16(12):3460-79 - PubMed
  12. Genetics. 2004 Dec;168(4):2197-206 - PubMed
  13. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4938-41 - PubMed
  14. Mol Plant Microbe Interact. 2005 Jun;18(6):583-92 - PubMed
  15. Annu Rev Phytopathol. 2005;43:205-27 - PubMed
  16. Annu Rev Phytopathol. 2005;43:545-80 - PubMed
  17. Plant Physiol. 2005 Sep;139(1):5-17 - PubMed
  18. Mol Plant Microbe Interact. 2005 Sep;18(9):923-37 - PubMed
  19. Annu Rev Entomol. 2006;51:663-89 - PubMed
  20. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5602-7 - PubMed
  21. Annu Rev Phytopathol. 2006;44:135-62 - PubMed
  22. New Phytol. 2007;173(1):146-53 - PubMed
  23. Plant Cell. 2007 May;19(5):1665-81 - PubMed
  24. Science. 1990 Nov 16;250(4983):1002-4 - PubMed
  25. Science. 1990 Nov 16;250(4983):1004-6 - PubMed
  26. Trends Plant Sci. 2007 Dec;12(12):564-9 - PubMed
  27. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18842-7 - PubMed
  28. Annu Rev Plant Biol. 2008;59:41-66 - PubMed
  29. Plant Physiol. 2008 Jul;147(3):1347-57 - PubMed
  30. Plant Physiol. 2008 Jul;147(3):1358-68 - PubMed
  31. Nat Protoc. 2008;3(6):1101-8 - PubMed
  32. BMC Res Notes. 2008 Oct 20;1:93 - PubMed
  33. Plant Physiol. 2009 Apr;149(4):1797-809 - PubMed
  34. J Exp Bot. 2009;60(4):1261-71 - PubMed
  35. Plant Biotechnol J. 2010 Feb;8(2):126-41 - PubMed
  36. Mol Plant Pathol. 2004 Sep 1;5(5):425-34 - PubMed
  37. J Exp Bot. 2011 Mar;62(6):2143-54 - PubMed
  38. Plant Cell. 2011 Feb;23(2):701-15 - PubMed
  39. Plant Cell. 1990 May;2(5):437-45 - PubMed
  40. Annu Rev Phytopathol. 2011;49:317-43 - PubMed
  41. Plant Cell. 2011 Jun;23(6):2405-21 - PubMed
  42. Plant Physiol. 2012 Feb;158(2):844-53 - PubMed
  43. Trends Plant Sci. 2012 May;17(5):260-70 - PubMed
  44. Annu Rev Cell Dev Biol. 2012;28:489-521 - PubMed
  45. Front Plant Sci. 2011 Sep 26;2:47 - PubMed
  46. Plant Physiol. 2012 Dec;160(4):2109-24 - PubMed
  47. BMC Plant Biol. 2012 Nov 13;12:213 - PubMed
  48. Plant J. 2013 Jul;75(1):90-103 - PubMed
  49. Methods Mol Biol. 2013;1011:35-49 - PubMed
  50. Front Plant Sci. 2013 May 24;4:155 - PubMed
  51. PLoS One. 2013 Jun 11;8(6):e65502 - PubMed
  52. Front Plant Sci. 2013 Dec 30;4:539 - PubMed
  53. Oecologia. 2014 Jun;175(2):589-600 - PubMed
  54. Mol Plant. 2014 Aug;7(8):1267-1287 - PubMed
  55. Trends Plant Sci. 2015 Jan;20(1):12-9 - PubMed
  56. Front Plant Sci. 2014 Sep 17;5:441 - PubMed
  57. Front Plant Sci. 2015 Mar 25;6:170 - PubMed
  58. Oecologia. 2001 Feb;126(3):380-385 - PubMed
  59. Oecologia. 2002 May;131(4):514-520 - PubMed
  60. Evolution. 1999 Aug;53(4):1093-1104 - PubMed
  61. Plant Cell. 1994 Dec;6(12):1845-57 - PubMed
  62. Plant Cell. 1996 Dec;8(12):2309-23 - PubMed
  63. Mol Plant Microbe Interact. 1997 Jan;10(1):30-8 - PubMed
  64. Plant Cell. 1998 Dec;10(12):2103-13 - PubMed

Publication Types